$\bar x$ | $\bar y$ | $\bar w$ | $\sum_{i=1}^{10}{({x_i}-\bar x)^2}$ | $\sum_{i=1}^{10}{({w_i}-\bar w)^2}$ | $\sum_{i=1}^{10}({x_i}-\bar x)({y_i}-\bar y)$ | $\sum_{i=1}^{10}({w_i}-\bar w)({y_i}-\bar y)$ |
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
分析 (1)根據(jù)散點圖是否按直線型分布作答;
(2)根據(jù)回歸系數(shù)公式得出y關(guān)于ω的線性回歸方程,再得出y關(guān)于x的回歸方程;
(3)利用基本不等式得出煤氣用量的最小值及其成立的條件.
解答 解:(1)$y=c+\fracl0wktrk{x^2}$更適宜作燒水時間y關(guān)于開關(guān)旋鈕旋轉(zhuǎn)的弧度數(shù)x的回歸方程類型.…(1分)
(2)由公式可得:$\hat d=\frac{{\sum_{i=1}^{10}{({w_i}-\bar w)({y_i}-\bar y)}}}{{\sum_{i=1}^{10}{{{({w_i}-\bar w)}^2}}}}=\frac{16.2}{0.81}=20$,…(3分)
$\hat c=\bar y-\hat d\overline{w}=20.6-20×0.78=5$,…(5分)
所以所求回歸方程為$y=5+\frac{20}{x^2}$.…(6分)
(3)設(shè)t=kx,則煤氣用量$S=yt=kx(5+\frac{20}{x^2})=5kx+\frac{20k}{x}≥2\sqrt{5kx•\frac{20k}{x}}=20k$,…(9分)
當且僅當$5kx=\frac{20k}{x}$時取“=”,即x=2時,煤氣用量最。11分)
答:x為2時,燒開一壺水最省煤氣. …(12分)
點評 本題考查了可化為線性相關(guān)的回歸方程的求解,基本不等式的應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a,b都為偶數(shù) | B. | a,b不為偶數(shù) | ||
C. | a,b都不為偶數(shù) | D. | a,b中有一個不為偶數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com