【題目】某漁業(yè)公司年初用81萬元購買一艘捕魚船,第一年各種費(fèi)用為1萬元,以后每年都增加2萬元,每年捕魚收益30萬元.
問第幾年開始獲利?
若干年后,有兩種處理方案:方案一:年平均獲利最大時(shí),以46萬元出售該漁船;
方案二:總純收入獲利最大時(shí),以10萬元出售該漁船問:哪一種方案合算?請(qǐng)說明理由.
【答案】(1)第4年開始獲利;(2)見解析.
【解析】
設(shè)第n年開始獲利,獲利為y萬元,利用數(shù)列列出n年的總費(fèi)用為獲利為利用二次函數(shù)的性質(zhì)求解即可.
求出方案一的總收益,方案二的總收益,即可得到結(jié)果.
設(shè)第n年開始獲利,獲利為y萬元,
由題意知,n年共收益30n萬元,每年的費(fèi)用是以1為首項(xiàng),2為公差的等差數(shù)列,
故n年的總費(fèi)用為.
獲利為
由即解得
,時(shí),即第4年開始獲利.
方案一:n年內(nèi)年平均獲利為.
由于,當(dāng)且僅當(dāng)時(shí)取“”號(hào).
萬元.
即前9年年平均收益最大,此時(shí)總收益為萬元
方案二:總純收入獲利.
當(dāng)時(shí),取最大值144,此時(shí)總收益為
兩種方案獲利相等,但方案一中,所需的時(shí)間短,
方案一較合算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合A={x|(x﹣2m+1)(x﹣m+2)<0},B={x|1≤x+1≤4}.
(1)若m=1,求A∩B;
(2)若A∩B=A,求實(shí)數(shù)m的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)求與橢圓有公共焦點(diǎn),并且離心率為的雙曲線方程.
(2)已知斜率為1的直線l過橢圓的右焦點(diǎn)F交橢圓于A、B兩點(diǎn),求弦AB的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】等腰△ABC中,AC=BC= ,AB=2,E,F(xiàn)分別為AC,BC的中點(diǎn),將△EFC沿EF折起,使得C到P,得到四棱錐P﹣ABFE,且AP=BP= .
(1)求證:平面EFP⊥平面ABFE;
(2)求二面角B﹣AP﹣E的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班學(xué)生一次數(shù)學(xué)考試成績頻率分布直方圖如圖所示,數(shù)據(jù)分組依次為[70,90),[90,110),[110,130),[130,150],若成績大于等于90分的人數(shù)為36,則成績?cè)赱110,130)的人數(shù)為( )
A.12
B.9
C.15
D.18
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校的課外綜合實(shí)踐研究小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到
市氣象觀測(cè)站與市醫(yī)院抄錄了1至6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到
如下資料:
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
晝夜溫差 (°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就診人數(shù) (個(gè)) | 22 | 25 | 29 | 26 | 16 | 12 |
該綜合實(shí)踐研究小組確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的是1月與6月的兩組數(shù)據(jù),請(qǐng)根據(jù)2至5月份的數(shù)據(jù),求出關(guān)于的線性回歸方程.
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?
參考數(shù)據(jù):
.
參考公式:回歸直線,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ +b(x≠0),其中a,b∈R.若對(duì)任意的a∈[ ,2],不等式f(x)≤10在x∈[ ,1]上恒成立,則b的取值范圍為明 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在區(qū)間上任取一個(gè)數(shù)記為a,在區(qū)間上任取一個(gè)數(shù)記為b.
若a,,求直線的斜率為的概率;
若a,,求直線的斜率為的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)若平面 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com