【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

【答案】
(1)

由a≥3,故x≤1時,

x2﹣2ax+4a﹣2﹣2|x﹣1|=x2+2(a﹣1)(2﹣x)>0;

當x>1時,x2﹣2ax+4a﹣2﹣2|x﹣1|=x2﹣(2+2a)x+4a=(x﹣2)(x﹣2a),

則等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍是(2,2a)


(2)

(1)設(shè)f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,

則f(x)min=f(1)=0,g(x)min=g(a)=﹣a2+4a﹣2.

由﹣a2+4a﹣2=0,解得a=2+ (負的舍去),

由F(x)的定義可得m(a)=min{f(1),g(a)},

即m(a)=


(3)

當0≤x≤2時,F(xiàn)(x)≤f(x)≤max{f(0),f(2)}=2=F(2);

當2<x≤6時,F(xiàn)(x)≤g(x)≤max{g(2),g(6)}

=max{2,34﹣8a}=max{F(2),F(xiàn)(6)}.

則M(a)=


【解析】(1)由a≥3,討論x≤1時,x>1,去掉絕對值,化簡x2﹣2ax+4a﹣2﹣2|x﹣1|,判斷符號,即可得到F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍;(2)(1)設(shè)f(x)=2|x﹣1|,g(x)=x2﹣2ax+4a﹣2,求得f(x)和g(x)的最小值,再由新定義,可得F(x)的最小值;(2)分別對當0≤x≤2時,當2<x≤6時,討論F(x)的最大值,即可得到F(x)在[0,6]上的最大值M(a).本題考查新定義的理解和運用,考查分類討論的思想方法,以及二次函數(shù)的最值的求法,不等式的性質(zhì),考查化簡整理的運算能力,屬于中檔題.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)的最值及其幾何意義的相關(guān)知識可以得到問題的答案,需要掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲担焕脠D象求函數(shù)的最大(。┲;利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,角α的頂點是原點,始邊與x軸正半軸重合,終邊交單位圓于點A,且.將角α的終邊按逆時針方向旋轉(zhuǎn),交單位圓于點B.記Ax1,y1),Bx2,y2).

(Ⅰ)若,求x2;

(Ⅱ)分別過A,Bx軸的垂線,垂足依次為C,D.記AOC的面積為S1,△BOD的面積為S2.若S1=2S2,求角α的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù).

(1)求的值;

(2)當時,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的點P和線段AC上的點D,滿足PD=DA,PB=BA,則四面體PBCD的體積的最大值是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知冪函數(shù)fx)=xa的圖象過點(2,4).

(1)求函數(shù)fx)的解析式;

(2)設(shè)函數(shù)hx)=4fx)-kx-8在[5,8]上是單調(diào)函數(shù),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列滿足|an |≤1,n∈N*
(1)求證:|an|≥2n1(|a1|﹣2)(n∈N*
(2)若|an|≤( n , n∈N* , 證明:|an|≤2,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某同學用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分數(shù)據(jù),如下表:

1)請將上表數(shù)據(jù)補充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);

2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;

3)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)銳角三角形的內(nèi)角A,B,C的對邊分別為a、b、c,且sinA-cosC=cos(A-B).

(1)求B的大小;

(2)求cosA+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ax2+bx+c(a≠0),滿足條件f(x+1)-f(x)=2x(x∈R),且f(0)=1.

(Ⅰ)求f(x)的解析式;

(Ⅱ)當x≥0時,f(x)≥mx-3恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案