【題目】某同學(xué)用五點法畫函數(shù)在某一個周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:

1)請將上表數(shù)據(jù)補(bǔ)充完整;函數(shù)的解析式為 (直接寫出結(jié)果即可);

2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象;

3)求函數(shù)在區(qū)間上的最大值和最小值.

【答案】(1)見解析;(2)詳見解析;(3)當(dāng)時,;當(dāng)時,

【解析】

(1)由表中數(shù)據(jù)可以得到的值與函數(shù)周期,從而求出,進(jìn)而求出,即可得到函數(shù)的解析式,利用函數(shù)解析式可將表中數(shù)據(jù)補(bǔ)充完整;(2)結(jié)合三角函數(shù)性質(zhì)與表格中的數(shù)據(jù)可以作出一個周期的圖象;(3)結(jié)合正弦函數(shù)單調(diào)性,可以求出函數(shù)的最值。

(1)根據(jù)表中已知數(shù)據(jù),解得,,數(shù)據(jù)補(bǔ)全如下表:

函數(shù)表達(dá)式為.

(2)根據(jù)表格中的數(shù)據(jù)作出一個周期的圖象見下圖:

(3)令,,則,

,可轉(zhuǎn)化為,,

因為正弦函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間(上單調(diào)遞增,

所以,在區(qū)間上單調(diào)遞減,在區(qū)間(上單調(diào)遞增,

的最小值為,最大值為,

由于時,;時,,

故當(dāng)時,;當(dāng)時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的長軸長為4,焦距為.

Ⅰ)求橢圓C的方程;

Ⅱ)過動點M0,m)(m>0)的直線交x軸與點N,交C于點A,PP在第一象限),且M是線段PN的中點,過點Px軸的垂線交C于另一點Q,延長線QMC于點B.

i)設(shè)直線PMQM的斜率分別為k、,證明為定值.

ii)求直線AB的斜率的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1證明 , , 不可能成等差數(shù)列;

2證明: , , 不可能為同一等差數(shù)列中的三項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a≥3,函數(shù)F(x)=min{2|x﹣1|,x2﹣2ax+4a﹣2},其中min(p,q)=
(1)求使得等式F(x)=x2﹣2ax+4a﹣2成立的x的取值范圍
(2)(1)求F(x)的最小值m(a)
(3)求F(x)在[0,6]上的最大值M(a)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高一年級某次數(shù)學(xué)競賽隨機(jī)抽取100名學(xué)生的成績,分組為[50,60),[60,70),[70,80),[80,90),[90,100],統(tǒng)計后得到頻率分布直方圖如圖所示:

(1)試估計這組樣本數(shù)據(jù)的眾數(shù)和中位數(shù)(結(jié)果精確到0.1);

(2)年級決定在成績[70,100]中用分層抽樣抽取6人組成一個調(diào)研小組,對高一年級學(xué)生課外學(xué)習(xí)數(shù)學(xué)的情況做一個調(diào)查,則在[70,80),[80,90),[90,100]這三組分別抽取了多少人?

(3)現(xiàn)在要從(2)中抽取的6人中選出正副2個小組長,求成績在[80,90)中至少有1人當(dāng)選為正、副小組長的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)當(dāng)時,求該函數(shù)的值域;

(2)求不等式的解集;

(3)若對于恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù), ),以原點為極點, 軸正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)求曲線的直角坐標(biāo)方程;

(2)當(dāng)有兩個公共點時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:

上年度出險次數(shù)

0

1

2

3

4

≥5

保費

0.85a

a

1.25a

1.5a

1.75a

2a

隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:

出險次數(shù)

0

1

2

3

4

≥5

頻數(shù)

60

50

30

30

20

10


(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”.求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”.求P(B)的估計值;
(3)求續(xù)保人本年度的平均保費估計值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù),若存在實數(shù)對,使得等式對定義域中的任意都成立,則稱函數(shù)是“型函數(shù)”.

(1)若函數(shù)是“型函數(shù)”,且,求出滿足條件的實數(shù)對;

(2)已知函數(shù).函數(shù)是“型函數(shù)”,對應(yīng)的實數(shù)對,當(dāng)時,.若對任意時,都存在,使得,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案