已知等差數(shù)列的前n項(xiàng)和Sn滿(mǎn)足,則下列結(jié)論正確的是( )

A.?dāng)?shù)列有最大值 B.?dāng)?shù)列有最小值

C. D.

 

D

【解析】

試題分析:由 ,得:,即:

因?yàn)閿?shù)列為等差數(shù)列,所以 ,即 ,故選D.

考點(diǎn):等差數(shù)列.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省高三上學(xué)期暑假聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

小明家訂了一份報(bào)紙,寒假期間他收集了每天報(bào)紙送達(dá)時(shí)間的數(shù)據(jù),并繪制成頻率分布直方圖,如圖所示.

(1)根據(jù)圖中的數(shù)據(jù)信息,求出眾數(shù)和中位數(shù)(精確到整數(shù)分鐘);

(2)小明的父親上班離家的時(shí)間上午之間,而送報(bào)人每天在時(shí)刻前后半小時(shí)內(nèi)把報(bào)紙送達(dá)(每個(gè)時(shí)間點(diǎn)送達(dá)的可能性相等),求小明的父親在上班離家前能收到報(bào)紙(稱(chēng)為事件)的概率.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省廣州市高三上學(xué)期第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在直三棱柱中,平面側(cè)面,且

(1) 求證:;

(2)若直線(xiàn)與平面所成的角為,求銳二面角的大小.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省廣州市高三上學(xué)期第一次質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知集合,,則集合( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省廣州市高三上學(xué)期第一次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,平行四邊形ABCD中,E為CD中點(diǎn),F(xiàn)在線(xiàn)段BC上,且BC=3BF。已知,則x的值為_(kāi)__________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省廣州市高三上學(xué)期第一次質(zhì)量檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知角為第二象限角,且,則的值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省東莞市高二下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

偏差是指?jìng)(gè)別測(cè)定值與測(cè)定的平均值之差,在成績(jī)統(tǒng)計(jì)中,我們把某個(gè)同學(xué)的某科考試成績(jī)與該科班平均分的差叫某科偏差,在某次考試成績(jī)統(tǒng)計(jì)中,某老師為了對(duì)學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進(jìn)行分析,隨機(jī)挑選了8位同學(xué),得到他們的兩科成績(jī)偏差數(shù)據(jù)如下:

學(xué)生序號(hào)

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

﹣5

﹣10

﹣18

物理偏差

6.5

3.5

3.5

1.5

0.5

﹣0.5

﹣2.5

﹣3.5

(1)若之間具有線(xiàn)性相關(guān)關(guān)系,求y關(guān)于x的線(xiàn)性回歸方程;

(2)若該次考試該班數(shù)學(xué)平均分為120分,物理平均分為91.5分,試由(1)的結(jié)論預(yù)測(cè)數(shù)學(xué)成績(jī)?yōu)?28分的同學(xué)的物理成績(jī).

參考數(shù)據(jù):

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東省東莞市高三上學(xué)期第二次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)若,試確定函數(shù)的單調(diào)區(qū)間;

(2)若,且對(duì)于任意,恒成立,試確定實(shí)數(shù)的取值范圍;

(3)設(shè)函數(shù),求證:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆廣東惠州市高三第二次調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿(mǎn)分14分)設(shè)函數(shù),. 曲線(xiàn)在點(diǎn)處的切線(xiàn)的斜率為.

(1)求的值;

(2)若存在,使得,求的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案