9.a(chǎn)>0是函數(shù)y=ax2+x+1在(0,+∞)上單調(diào)遞增的充分不必要條件.

分析 對于函數(shù)y=ax2+x+1,對a分類討論,利用一次函數(shù)與二次函數(shù)的單調(diào)性即可判斷出結論.

解答 解:對于函數(shù)y=ax2+x+1,a=0時,y=x+1在(0,+∞)上單調(diào)遞增;
a>0時,y=a$(x+\frac{1}{2a})^{2}$+1-$\frac{1}{4a}$在$(-\frac{1}{2a},+∞)$上單調(diào)遞增,因此在(0,+∞)上單調(diào)遞增;
a<0時,y=a$(x+\frac{1}{2a})^{2}$+1-$\frac{1}{4a}$在$(-\frac{1}{2a},+∞)$上單調(diào)遞減,因此在(0,+∞)上單調(diào)遞減.
由以上可得:a>0是函數(shù)y=ax2+x+1在(0,+∞)上單調(diào)遞增的充分不必要條件.
故答案為:充分不必要.

點評 本題考查了函數(shù)的單調(diào)性、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

19.已知點F為橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左焦點,且兩焦點與短軸的一個頂點構成一個等邊三角形,直線$\frac{x}{4}+\frac{y}{2}=1$與橢圓E有且僅有一個交點M.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設直線$\frac{x}{4}+\frac{y}{2}=1$與y軸交于P,過點P的直線與橢圓E交于兩不同點A,B,若λ|PM|2=|PA|•|PB|,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.一個幾何體的三視圖如圖所示,則它的體積為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$6\sqrt{2}$D.$6\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.將參加數(shù)學競賽決賽的500名同學編號為:001,002,…,500,采用系統(tǒng)抽樣的方法抽取一個容量為50的樣本,且隨機抽的號碼為003,這500名學生分別在三個考點考試,從001到200在第一考點,從201到355在第二考點,從356到500在第三考點,則第二考點被抽中的人數(shù)為( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.定義在[0,+∞)上的函數(shù)f(x)滿足:①當x∈[1,2)時,$f(x)=\frac{1}{2}-|{x-\frac{3}{2}}|$;②?x∈[0,+∞)都有f(2x)=2f(x).設關于x的函數(shù)F(x)=f(x)-a的零點從小到大依次為x1,x2,x3,…xn,…,若$a∈({\frac{1}{2},1})$,則x1+x2+…+x2n=6×(2n-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.命題p:“?x∈N+,($\frac{1}{2}$)x≤$\frac{1}{2}$”的否定為( 。
A.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$B.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$C.?x∉N+,($\frac{1}{2}$)x>$\frac{1}{2}$D.?x∈N+,($\frac{1}{2}$)x>$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x≥0}\\{x-y+1≤0}\\{x+y-3≤0}\end{array}\right.$,則目標函數(shù)z=3x-y的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知定義域為{x|x≠0}的偶函數(shù)f(x),其導函數(shù)為f′(x),對任意正實數(shù)x滿足xf′(x)>-2f(x),若g(x)=x2f(x),則不等式g(x)<g(1)的解集是( 。
A.(-∞,1)B.(-∞,0)∪(0,1)C.(-1,1)D.(-1,0)∪(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.若sinθ•cosθ>0,sinθ+cosθ<0,則tanθ-cosθ的值( 。
A.恒為正數(shù)B.恒為負數(shù)C.恒為非正數(shù)D.恒為非負數(shù)

查看答案和解析>>

同步練習冊答案