【題目】在平面直角坐標系中,圓的方程為為參數(shù)).以坐標原點為極點,軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線的極坐標方程為

(1)當(dāng)時,判斷直線與圓的關(guān)系;

2)當(dāng)上有且只有一點到直線的距離等于時,求上到直線距離為的點的坐標.

【答案】(1)相交;(2)

【解析】分析:(1)圓的普通方程為,直線的直角坐標方程為:,利用圓心到直線的距離與半徑的大小關(guān)系可得結(jié)論;(2)上到直線距離為的點的坐標就是過圓心與直線平行的直線與圓的交點,聯(lián)立直線方程與圓方程求解即可.

詳解(1)圓的普通方程為,

直線的直角坐標方程為:

圓心到直線的距離為,

所以直線與圓相交;

2)圓上有且只有一點到直線的距離等于,

即圓心到直線的距離為,

過圓心與直線平行的直線方程為:.

聯(lián)立方程組,

解得,

故所求點為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,準備在墻上釘一個支架,支架由兩直桿AC與BD 焊接而成,焊接點 D 把桿AC 分成 AD, CD 兩段,其中兩固定點A,B 間距離為1 米,AB 與桿 AC 的夾角為60 ,桿AC 長為 1 米,若制作 AD 段的成本為a 元/米,制作 CD 段的成本是 2a 元/米,制作桿BD 成本是 3a 元/米. 設(shè) ADB ,則制作整個支架的總成本記為 S 元.

(1)求S關(guān)于 的函數(shù)表達式,并求出的取值范圍;

(2)問 段多長時,S最?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A、B、C所對的邊分別為a、b、c,已知a≠b,cos2A﹣cos2B= sinAcosA﹣ sinBcosB. (Ⅰ)求角C的大;
(Ⅱ)若c= ,siniA= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)對任意,都有.

(1)若函數(shù)的頂點坐標為,求的解析式;

(2)函數(shù)的最小值記為,求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),,.

(1)用函數(shù)單調(diào)性的定義在在證明:函數(shù)在區(qū)間上單調(diào)遞減,在上單調(diào)遞增;

(2)若對任意滿足的實數(shù),都有成立,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊥平面ACD,DE∥AB,△ACD是等腰三角形,∠CAD=120°,AD=DE=2AB.
(I)求證:平面BCE⊥平面CDE;
(II)求平面BCE與平面ADEB所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)為了提高當(dāng)?shù)氐胤浇?jīng)濟總量,決定引進資金對原有的兩個企業(yè)進行改造,計劃每年對兩個企業(yè)共投資500萬元,要求對每個企業(yè)至少投資50萬元.根據(jù)已有經(jīng)驗,改造后企業(yè)的年收益(單位:萬元)和企業(yè)的年收益(單位:萬元)與投入資金(單位:萬元)分別滿足關(guān)系式:,.設(shè)對企業(yè)投資額為(單位:萬元),每年兩個企業(yè)的總收益為(單位:萬元).

(1)求;

(2)試問如何安排兩個企業(yè)的投入資金,才能使兩個企業(yè)的年總收益達到最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Sn為數(shù)列{ }的前n項和,求證:1≤Sn<4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)k為常數(shù),e為自然對數(shù)的底數(shù)),曲線在點(1, f (1))處的切線與x軸平行.

(1)求k的值;

(2)求的單調(diào)區(qū)間;

(3)設(shè)其中的導(dǎo)函數(shù),證明:對任意

查看答案和解析>>

同步練習(xí)冊答案