12.已知數(shù)列{an}的前n項和為Sn,a1=2,Sn=an+1-2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足2${\;}^{\frac{1}{_{n}}}$=a1a2…an,且k•(b1+b2+…+bn)≤an(n∈N*),求實數(shù)k的最大值.

分析 (1)利用公式an=Sn-Sn-1判斷{an}為等比數(shù)列,從而得出通項公式;
(2)求出bn=$\frac{2}{n(n+1)}$,使用裂項求和得出b1+b2+…+bn,從而得出k≤$\frac{n+1}{n}•{2}^{n-1}$,判斷新數(shù)列{$\frac{n+1}{n}•{2}^{n-1}$}的單調(diào)性得出$\frac{n+1}{n}•{2}^{n-1}$的最小值即為k的最大值.

解答 解:(1)n=1時,a1=a2-2,∴a2=a1+2=4.
當(dāng)n≥2時,an=Sn-Sn-1=an+1-2-(an-2),∴2an=an+1
即$\frac{{a}_{n+1}}{{a}_{n}}=2$,又$\frac{{a}_{2}}{{a}_{1}}=2$,
∴{an}是以2為首項,以2為公比的等比數(shù)列.
∴an=2n
(2)∵a1a2…an=21+2+3+…+n=2${\;}^{\frac{(n+1)n}{2}}$,
∴bn=$\frac{2}{n(n+1)}$=2($\frac{1}{n}-\frac{1}{n+1}$).
∴b1+b2+…+bn=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{n}-\frac{1}{n+1}$)=$\frac{2n}{n+1}$.
∵k•(b1+b2+…+bn)≤an
∴k≤$\frac{n+1}{2n}$•an=$\frac{n+1}{n}•{2}^{n-1}$.
設(shè)cn=$\frac{n+1}{n}•{2}^{n-1}$,則cn+1-cn=$\frac{n+2}{n+1}•{2}^{n}$-$\frac{n+1}{n}•{2}^{n-1}$
=2n-1($\frac{2n+4}{n+1}$-$\frac{n+1}{n}$)=2n-1•$\frac{{n}^{2}+2n-1}{n(n+1)}$>0.
∴{cn}為遞增數(shù)列,∴當(dāng)n=1時,cn取得最小值2.
∴k≤2.
∴實數(shù)k的最大值為2.

點評 本題考查了等比數(shù)列的性質(zhì),數(shù)列求和及數(shù)列單調(diào)性的應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),若tan(α+β)=2tanβ,則當(dāng)α取得最大值時,tan2α=$\frac{{4\sqrt{2}}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.?dāng)?shù)列{an}的前n項和記為Sn,a1=1,點(Sn,an+1)在直線y=3x+1上,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log4an+1,cn=an+bn,Tn是數(shù)列{cn}的前n項和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知x1,x2∈R,則(x1-e${\;}^{{x}_{2}}$)2+(x2-e${\;}^{{x}_{1}}$)2的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,則函數(shù)f(x)的單調(diào)遞增區(qū)間為(  )
A.[$\frac{kπ}{2}$+$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{π}{6}$],k∈Z
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈ZD.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,四棱錐P-ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)證明:EF∥面PAD;
(2)證明:面PDC⊥面PAD;
(3)求銳二面角B-PD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.點P在直線2x-y+1=0上,O為坐標(biāo)原點,則|OP|的最小值是( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若sinθ=$\frac{3}{5}$,θ為第二象限角,則sin2θ≡-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求此函數(shù)的單調(diào)增區(qū)間;
(3)若x∈[0,$\frac{π}{2}$],求函數(shù)的最大值、最小值及取得最值時x的取值集合.

查看答案和解析>>

同步練習(xí)冊答案