1.若sinθ=$\frac{3}{5}$,θ為第二象限角,則sin2θ≡-$\frac{24}{25}$.

分析 利用同角三角函數(shù)的基本關(guān)系求得cosθ的值,再利用二倍角公式求得sin2θ的值.

解答 解:∵sinθ=$\frac{3}{5}$,θ為第二象限角,∴cosθ=-$\sqrt{{1-sin}^{2}θ}$=-$\frac{4}{5}$,
則sin2θ=2sinθcosθ=-$\frac{24}{25}$,
故答案為:-$\frac{24}{25}$.

點評 本題主要考查同角三角函數(shù)的基本關(guān)系,二倍角公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知△ABC中,角A、B、C所對的邊分別為a、b、c
(Ⅰ)證明:若A、B、C成等差數(shù)列,則B=$\frac{π}{3}$;
(Ⅱ)證明:若a、b、c的倒數(shù)成等差數(shù)列,則B<$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知數(shù)列{an}的前n項和為Sn,a1=2,Sn=an+1-2.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足2${\;}^{\frac{1}{_{n}}}$=a1a2…an,且k•(b1+b2+…+bn)≤an(n∈N*),求實數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=asinx-bcosx(a,b為常數(shù),x∈R)在x=$\frac{π}{3}$處取得最小值,則函數(shù)y=f($\frac{2π}{3}$-x)的圖象關(guān)于( 。┲行膶ΨQ.
A.($\frac{5π}{6}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{2}$,0)D.($\frac{π}{3}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.某空間幾何體的三視圖(單位:cm)如圖所示,則其體積是6cm3,表面積是20+2$\sqrt{2}$cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=$\sqrt{3}$sinx-cosx的振幅和頻率分別為( 。
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=2cos(2x-$\frac{π}{4}}$)圖象的一個對稱中心是( 。
A.($\frac{π}{2},2}$)B.($\frac{π}{4}$,$\sqrt{2}}$)C.(-$\frac{π}{2}$,2)D.($\frac{3π}{8}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在△ABC中,sinB=$\frac{12}{13}$,cosA=$\frac{3}{5}$,則sinC為(  )
A.$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{63}{65}$D.$\frac{16}{65}$或$\frac{56}{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等差數(shù)列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)時,則數(shù)列{an}的前n項和為Sn取得最小值時n的值為10.

查看答案和解析>>

同步練習(xí)冊答案