分析 由于直線過(guò)定點(diǎn)M(3,1),點(diǎn)M在圓C:(x-1)2+(y-2)2=25的內(nèi)部,故直線被圓截得的弦長(zhǎng)最短時(shí),CM垂直于直線l,即可得出結(jié)論.
解答 解:直線l:(2m+1)x+(m+1)y-7m-4=0 即(x+y-4)+m(2x+y-7)=0,過(guò)定點(diǎn)M(3,1),
由于點(diǎn)M在圓C:(x-1)2+(y-2)2=25的內(nèi)部,故直線被圓截得的弦長(zhǎng)最短時(shí),CM垂直于直線l,CM=$\sqrt{(3-1)^{2}+(1-2)^{2}}$=$\sqrt{5}$
l被圓C截得的最短弦長(zhǎng)為2$\sqrt{25-5}$=4$\sqrt{5}$,
故答案為:4$\sqrt{5}$.
點(diǎn)評(píng) 本題主要考查直線和圓的位置關(guān)系,直線過(guò)定點(diǎn)問(wèn)題,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 73.3,75,72 | B. | 72,75,73.3 | C. | 75,72,73.3 | D. | 75,73.3,72 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $4\sqrt{2}$ | C. | 6 | D. | $2\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com