【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由 得(2x﹣1)(x﹣3)>0,

解得x< 或x>3,則集合B={x|x< 或x>3},

因集合A={x|1<x≤5},

所以A∩B={x|3<x≤5}


(2)解:因?yàn)镃∪A=A,所以CA={x|1<x≤5},

又集合C={x|a+1≤x≤4a﹣3},

①當(dāng)C=時(shí),則4a﹣3<a+1,解得 ,滿足題意;

②當(dāng)C≠時(shí),要使CA,則 ,解得

綜上所述,實(shí)數(shù)a的取值范圍為(﹣∞,2]


【解析】(1)由分式不等式的解法求出集合B,由交集的運(yùn)算求出A∩B;(2)由C∪A=A得CA,根據(jù)子集的定義對(duì)C進(jìn)行分類討論,分別列出不等式組,求出實(shí)數(shù)a的取值范圍.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解集合的交集運(yùn)算的相關(guān)知識(shí),掌握交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠商為了解用戶對(duì)其產(chǎn)品是否滿意,在使用產(chǎn)品的用戶中隨機(jī)調(diào)查了80人,結(jié)果如下表:

(1)根據(jù)上述,現(xiàn)用分層抽樣的方法抽取對(duì)產(chǎn)品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;

(2)有多大把握認(rèn)為用戶對(duì)該產(chǎn)品是否滿意與用戶性別有關(guān)?請(qǐng)說明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某大學(xué)自主招生考試中,所有選報(bào)Ⅱ類志向的考生全部參加了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個(gè)科目的考試,成績分為A,B,C,D,E五個(gè)等級(jí).某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中“數(shù)學(xué)與邏輯”科目的成績等級(jí)為B的考生有10人.

(1)求該考場考生中“閱讀與表達(dá)”科目中成績等級(jí)為A的人數(shù);

(2)已知參加本考場測試的考生中,恰有2人的兩科成績等級(jí)均為A.在至少一科成績等級(jí)為A的考生中,隨機(jī)抽取2人進(jìn)行訪談,求這2人的兩科成績等級(jí)均為A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位共有10名員工,他們某年的收入如下表:

員工編號(hào)

1

2

3

4

5

6

7

8

9

10

年薪(萬元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

(1)求該單位員工當(dāng)年年薪的平均值和中位數(shù);

(2)從該單位中任取2人,此2人中年薪收入高于7萬的人數(shù)記為,求的分布列和期望;

(3)已知員工年薪收入與工作年限成正相關(guān)關(guān)系,某員工工作第一年至第四年的年薪分別為4萬元,5.5萬元,6萬元,8.5萬元,預(yù)測該員工第五年的年薪為多少?

附:線性回歸方程中系數(shù)計(jì)算公式分別為:

, ,其中為樣本均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù),是自然對(duì)數(shù)的底數(shù),曲線在點(diǎn)處的切線與軸平行

1的值;

2的單調(diào)區(qū)間

3設(shè),其中的導(dǎo)函數(shù)證明:對(duì)任意,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),記的極大值為,極小值為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,網(wǎng)格紙上小正方形的邊長為,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分所得,則該幾何體的體積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)G為△ABC的重心,過G作直線l分別交線段AB,AC(不與端點(diǎn)重合)于P,Q.若
(1)求 + 的值;
(2)求λμ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案