【題目】某廠商為了解用戶對其產品是否滿意,在使用產品的用戶中隨機調查了80人,結果如下表:
(1)根據上述,現用分層抽樣的方法抽取對產品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;
(2)有多大把握認為用戶對該產品是否滿意與用戶性別有關?請說明理由.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
注:
【答案】(1) (2)有97.5%的把握
【解析】試題分析:
(1)結合題意列出所有可能的事件,利用古典概型公式計算可得被選中的恰好是男、女用戶各1人的概率是
(2)由題意求得K2≈5.333>5.024,則有97.5%的把握認為用戶對該產品是否滿意與用戶性別有關.
試題解析:
(1)在滿意產品的女用戶中應抽取20×=2(人)記r,s
在滿意產品的男用戶中應抽取30×=3(人)記a,b,c
從5人中任選2人,共有10種情況:ab,ac,ar,as,bc,br,bs,cr,cs,rs
其中一男一女的情況6種,所以P==
(2) K2=≈5.333>5.024
所以有97.5%的把握認為用戶對該產品是否滿意與用戶性別有關
科目:高中數學 來源: 題型:
【題目】已知長方形, , ,以的中點為原點,建立如圖所示的平面直角坐標系.
(1)求以為焦點,且過兩點的橢圓的標準方程;
(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線的方程為,直線的傾斜角為且經過點.
(1)以為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;
(2)設直線與曲線交于兩點,,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com