精英家教網 > 高中數學 > 題目詳情

【題目】某廠商為了解用戶對其產品是否滿意,在使用產品的用戶中隨機調查了80人,結果如下表:

(1)根據上述,現用分層抽樣的方法抽取對產品滿意的用戶5人,在這5人中任選2人,求被選中的恰好是男、女用戶各1人的概率;

(2)有多大把握認為用戶對該產品是否滿意與用戶性別有關?請說明理由.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

注:

【答案】(1) (2)有97.5%的把握

【解析】試題分析:

(1)結合題意列出所有可能的事件,利用古典概型公式計算可得被選中的恰好是男、女用戶各1人的概率是

(2)由題意求得K2≈5.333>5.024,則有97.5%的把握認為用戶對該產品是否滿意與用戶性別有關.

試題解析:

(1)在滿意產品的女用戶中應抽取20×=2(人)記r,s

在滿意產品的男用戶中應抽取30×=3(人)記a,b,c

5人中任選2人,共有10種情況:ab,ac,ar,as,bc,br,bs,cr,cs,rs

其中一男一女的情況6種,所以P==

(2) K2=≈5.333>5.024

所以有97.5%的把握認為用戶對該產品是否滿意與用戶性別有關

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,函數y=f(x)的圖像為折線ABC,設g (x)=f[f(x)],則函數y=g(x)的圖像為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知長方形, ,以的中點為原點,建立如圖所示的平面直角坐標系.

(1)求以為焦點,且過兩點的橢圓的標準方程;

(2)在(1)的條件下,過點作直線與橢圓交于不同的兩點,設,點坐標為,若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的奇函數f(x),當x>0時,f(x)=2;則奇函數f(x)的值域是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的方程為,直線的傾斜角為且經過點.

(1)以為極點,軸的正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)設直線與曲線交于兩點,,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數為常數)的圖象在處的切線方程為.

(1)判斷函數的單調性;

(2)已知,且,若對任意,任意 中恰有一個恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若曲線在點處的切線斜率為3,且有極值,求函數的解析式;

(2)在(1)的條件下,求函數上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】求下列各題:
(1)計算:
(2)計算lg20+log10025;
(3)求函數 的定義域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A={x|1<x≤5},集合B={ >0}.
(1)求A∩B;
(2)若集合C={x|a+1≤x≤4a﹣3},且C∪A=A,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案