4.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作漸近線的垂線,設(shè)垂足為P(P為第一象限的點),延長FP交拋物線y2=2px(p>0)于點Q,其中該雙曲線與拋物線有一個共同的焦點,若$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),則雙曲線的離心率的平方為(  )
A.$\sqrt{5}$B.$\frac{\sqrt{5}}{2}$C.$\sqrt{5}$+1D.$\frac{\sqrt{5}+1}{2}$

分析 由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P為FQ的中點,設(shè)F(c,0),一條漸近線方程和垂直的垂線方程,求得交點P的坐標,由中點坐標公式可得Q的坐標,代入拋物線的方程,結(jié)合離心率公式,解方程可得所求值.

解答 解:由$\overrightarrow{OP}$=$\frac{1}{2}$($\overrightarrow{OF}$+$\overrightarrow{OQ}$),可得P為FQ的中點,
設(shè)F(c,0),由漸近線方程y=$\frac{a}$x,①
可設(shè)直線FP的方程為y=-$\frac{a}$(x-c),②
由①②解得P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由中點坐標公式可得Q($\frac{2{a}^{2}}{c}$-c,$\frac{2ab}{c}$),
代入拋物線的方程可得$\frac{4{a}^{2}^{2}}{{c}^{2}}$=2p•($\frac{2{a}^{2}}{c}$-c),③
由題意可得c=$\frac{p}{2}$,即2p=4c,
③即有c4-a2c2-a4=0,
由e=$\frac{c}{a}$可得e4-e2-1=0,
解得e2=$\frac{1+\sqrt{5}}{2}$.
故選:D.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的漸近線方程和中點坐標公式,以及點滿足拋物線的方程,考查化簡整理的運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

14.如圖,F(xiàn)1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,|F1F2|=2$\sqrt{3}$,|DE|=$\sqrt{5}$,若點M(x0,y0)在橢圓C上,則點N($\frac{{x}_{0}}{a}$,$\frac{{y}_{0}}$)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)試探討△AOB的面積S是否為定值?若為定值,求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下面幾種推理中是演繹推理的是( 。
A.由金、銀、銅、鐵可導電,猜想:金屬都可以導電
B.猜想數(shù)列5,7,9,11,…的通項公式為an=2n+3
C.由正三角形的性質(zhì)得出正四面體的性質(zhì)
D.半徑為r的圓的面積S=π•r2,則單位圓的面積S=π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知拋物線y2=4px(p>0)的焦點也是雙曲線$\frac{{x}^{2}}{3p+8}$-$\frac{{y}^{2}}{p+4}$=1的一個焦點,則p=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.三個圓有相同的半徑,都是3,圓心分別為(14,92)、(17,76)和(19,84).一條直線通過點(17,76),且位于它同一側(cè)的三個圓各部分的面積之和等于另一側(cè)三個圓各部分的面積之和,那么這條直線的斜率的絕對值為$\frac{8}{5}$或24.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是( 。
A.($\frac{1}{8}$,$\frac{1}{4}$)B.($\frac{1}{12}$,$\frac{1}{4}$)C.($\frac{1}{12}$,$\frac{1}{8}$)D.($\frac{1}{8}$,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知函數(shù)y=2sin($\frac{2}{9}$x-$\frac{20π}{27}$),把它的圖象向左平移$\frac{π}{3}$個單位,再使其圖象上每點的縱坐標不變,橫坐標縮小為原來的$\frac{1}{3}$,得到的圖象對應(yīng)的解析式為( 。
A.y=2sin($\frac{2}{3}$x-$\frac{π}{9}$)B.y=2sin($\frac{2}{3}$x-$\frac{2π}{3}$)C.y=2sin($\frac{2}{3}$x-$\frac{5π}{9}$)D.y=2sin(6x-$\frac{7π}{3}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.觀察下列各式:a1+b1=1,a2+b2=3,a3+b3=5,a4+b4=7,…,則a11+b11=21.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點為F1,F(xiàn)2,離心率為$\frac{\sqrt{2}}{2}$,點M是橢圓上一點,△MF1F2的面積的最大值為1.
(1)求橢圓的標準方程;
(2)設(shè)不經(jīng)過焦點F1的直線L與橢圓交于兩個不同的點A,B,焦點F2到直線L的距離為d,如果直線AF1,L,BF1的斜率依次成等差數(shù)列,求d的取值范圍.

查看答案和解析>>

同步練習冊答案