已知函數(shù).
(Ⅰ)若,求不等式的解集;
(Ⅱ)若方程有三個(gè)不同的解,求的取值范圍.
(Ⅰ)的解集為;(Ⅱ).
解析試題分析:(Ⅰ)時(shí),,
∴當(dāng)時(shí),不合題意;
當(dāng)時(shí),,解得;
當(dāng)時(shí),符合題意. 3分
綜上,的解集為 5分
(Ⅱ)設(shè),的圖象和的圖象如圖: 7分
易知的圖象向下平移1個(gè)單位以?xún)?nèi)(不包括1個(gè)單位)與的圖象始終有3個(gè)交點(diǎn),
從而. 10分
考點(diǎn):本題主要考查絕對(duì)值的概念,分段函數(shù)的概念,絕對(duì)值不等式的解法。
點(diǎn)評(píng):中檔題,涉及絕對(duì)值問(wèn)題,一般要考慮“去絕對(duì)值符號(hào)”,常用方法是:平方法、分類(lèi)討論法。本題(II)將問(wèn)題轉(zhuǎn)化成研究函數(shù)圖象的交點(diǎn),實(shí)現(xiàn)了“化難為易”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)表示導(dǎo)函數(shù)。
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)當(dāng)為奇數(shù)時(shí),設(shè),數(shù)列的前項(xiàng)和為,證明不等式對(duì)一切正整數(shù)均成立,并比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)當(dāng)時(shí),求函數(shù)的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)的單調(diào)性.
(Ⅲ)若對(duì)任意及任意,恒有 成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)
(1)畫(huà)出函數(shù)的圖象;
(2)若不等式 恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是上的增函數(shù),,.
(Ⅰ)若,求證:;
(Ⅱ)判斷(Ⅰ)中命題的逆命題是否成立,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義在R上的偶函數(shù)在上遞增,函數(shù)f(x)的一個(gè)零點(diǎn)為,
求滿(mǎn)足的x的取值集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在與時(shí)都取得極值.
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對(duì),不等式恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)討論的奇偶性;
(2)當(dāng)時(shí),求的單調(diào)區(qū)間;
(3)若對(duì)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com