函數(shù) 
(1)畫出函數(shù)的圖象;
(2)若不等式 恒成立,求實(shí)數(shù)的范圍.

(1)

(2) 。

解析試題分析:(1)

5分
(2) 由 得
又因為    則有       8分
解不等式, 得            10分
考點(diǎn):本題主要考查絕對值的概念,分段函數(shù)的概念及圖象,絕對值不等式的性質(zhì)。
點(diǎn)評:中檔題,涉及絕對值問題,一般要考慮“去絕對值符號”,常用方法是:平方法、分類討論法。本題(II)將問題轉(zhuǎn)化成研究最值問題,得到xd的不等式,利用絕對值的幾何意義,解不等式。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知O為坐標(biāo)原點(diǎn),

(1)求的單調(diào)遞增區(qū)間;
(2)若的定義域為,值域為[2,5],求m的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線  在點(diǎn)  處的切線  平行直線,且點(diǎn)在第三象限.
(Ⅰ)求的坐標(biāo);
(Ⅱ)若直線  , 且  也過切點(diǎn) ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),(為實(shí)常數(shù))
(1)若,將寫出分段函數(shù)的形式,并畫出簡圖,指出其單調(diào)遞減區(qū)間;
(2)設(shè)在區(qū)間上的最小值為,求的表達(dá)式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)時都取得極值
(1)求的值與函數(shù)的單調(diào)區(qū)間
(2)若對,不等式恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在下列定義域內(nèi)的值域。
(1)函數(shù)y=f(x)的值域
(2)(其中)函數(shù)y=f(x)的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(Ⅰ)若,求不等式的解集;
(Ⅱ)若方程有三個不同的解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(b為常數(shù)).
(1)函數(shù)f(x)的圖像在點(diǎn)(1,f(1))處的切線與g(x)的圖像相切,求實(shí)數(shù)b的值;
(2)設(shè)h(x)=f(x)+g(x),若函數(shù)h(x)在定義域上存在單調(diào)減區(qū)間,求實(shí)數(shù)b 的取值范圍;
(3)若b>1,對于區(qū)間[1,2]上的任意兩個不相等的實(shí)數(shù)x1,x2,都有|f(x1)-f(x2)|> |g(x1)-g(x2)|成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義在[-1,1]上的奇函數(shù)滿足,且當(dāng),時,有
(1)試問函數(shù)f(x)的圖象上是否存在兩個不同的點(diǎn)A,B,使直線AB恰好與y軸垂直,若存在,求出A,B兩點(diǎn)的坐標(biāo);若不存在,請說明理由并加以證明.
(2)若對所有,恒成立,
求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案