【題目】已知集合 ,B={x|2<x<9}.
(1)分別求:R(A∩B),(RB)∪A;
(2)已知C={x|2a<x<a+3},若CB,求實數(shù)a的取值范圍.

【答案】
(1)解:集合

={x| }

={x|3≤x<6},

B={x|2<x<9},

∴A∩B={x|3≤x<6},

∴CR(A∩B)={x|x<3或x≥6};

CRB={x|x≤2或x≥9},

∴(CRB)∪A={x|x≤2或3≤x<6或x≥9}


(2)解:當C=時,2a≥a+3,解得a≥3;

當C≠時, ,

解得 ,

即1≤a<3;

綜上,a≥1


【解析】(1)化簡集合A,根據(jù)交集、補集與并集的定義進行計算即可;(2)根據(jù)題意,討論C=和C≠時,求出對應a的取值范圍.
【考點精析】根據(jù)題目的已知條件,利用交、并、補集的混合運算的相關知識可以得到問題的答案,需要掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區(qū)分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發(fā)去揭示、挖掘題設條件,結合Venn圖或數(shù)軸進而用集合語言表達,增強數(shù)形結合的思想方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點(1,2)是函數(shù)f(x)=ax(a>0,且a≠1)的圖象上一點,數(shù)列{an}的前n項和Sn=f(n)﹣1.
求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為集合A,B={x∈Z|2<x<10},C={x∈R|x<a或x>a+1}
(1)求A,(RA)∩B;
(2)若A∪C=R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)的最小值為1.

(1)求的值;

(2)若,求實數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 =1(a>b>0)的左右焦點F1、F2 , 離心率為 ,雙曲線方程為 =1(a>0,b>0),直線x=2與雙曲線的交點為A、B,且|AB|=
(Ⅰ)求橢圓與雙曲線的方程;
(Ⅱ)過點F2的直線l與橢圓交于M、N兩點,交雙曲線與P、Q兩點,當△F1MN(F1為橢圓的左焦點)的內切圓的面積取最大值時,求△F1PQ的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點是拋物線的焦點, 若點,

1)求的值;

2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為備戰(zhàn)年瑞典乒乓球世界錦標賽,乒乓球隊舉行公開選撥賽,甲、乙、丙三名選手入圍最終單打比賽名單.現(xiàn)甲、乙、丙三人進行隊內單打對抗比賽,每兩人比賽一場,共賽三場每場比賽勝者得分,負者得分,在每一場比賽中,甲勝乙的概率為,丙勝甲的概率為,乙勝丙的概率為,且各場比賽結果互不影響.若甲獲第一名且乙獲第三名的概率為.

(Ⅰ)求的值;

(Ⅱ)設在該次對抗比賽中,丙得分為,求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=log2(x2﹣4)的定義域為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若Sn=cos +cos +…+cos (n∈N+),則在S1 , S2 , …,S2015中,正數(shù)的個數(shù)是(
A.882
B.756
C.750
D.378

查看答案和解析>>

同步練習冊答案