已知函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1(t∈R).
(Ⅰ)若函數(shù)f(x)在點(diǎn)(2,f(2))處的切線與直線y=9x-2平行,求t的值;
(Ⅱ)設(shè)函數(shù)g(x)=f′(x)+3lnx-3x2,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值,求t的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專(zhuān)題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(Ⅰ)求導(dǎo)數(shù),利用函數(shù)f(x)在點(diǎn)(2,f(2))處的切線與直線y=9x-2平行,建立方程,即可求t的值;
(Ⅱ)求函數(shù)g(x)=f′(x)+3lnx-3x2的導(dǎo)數(shù),分類(lèi)討論,利用導(dǎo)數(shù)的正負(fù),即可求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)分類(lèi)討論,確定函數(shù)在x∈[0,2]上的單調(diào)性,利用存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值,即可求t的取值范圍.
解答: 解:(Ⅰ)f'(x)=3x2-3(t+1)x+3t,…(1分)
因?yàn)楹瘮?shù)f(x)在點(diǎn)(2,f(2))處的切線與直線y=9x-2平行,
所以f'(2)=9,3×22-3(t+1)×2+3t=9,
∴t=-1,即t的值為-1.     …(4分)
(Ⅱ)g(x)=f'(x)+3lnx-3x2=3x2-3(t+1)x+3t+3lnx-3x2=-3(t+1)x+3t+3lnxg′(x)=
3
x
-3(t+1)=3[
1
x
-(t+1)]
,…(5分)
①當(dāng) t+1≤0時(shí),即 t≤-1時(shí),g'(x)>0,函數(shù)g(x)在(0,+∞)上單調(diào)遞增;
②當(dāng) t+1>0時(shí),即 t>-1時(shí),x∈(0,
1
t+1
)
時(shí),g'(x)>0;x∈(
1
t+1
,+∞)
時(shí),g'(x)<0,
即函數(shù)g(x)在(0,
1
t+1
)
上單調(diào)遞增,函數(shù)g(x)在(
1
t+1
,+∞)
上單調(diào)遞減,
綜上,當(dāng)t≤-1時(shí),函數(shù)g(x)在(0,+∞)上單調(diào)遞增;當(dāng)t>-1時(shí),函數(shù)g(x)在(0,
1
t+1
)
上單調(diào)遞增,
函數(shù)g(x)在(
1
t+1
,+∞)
上單調(diào)遞減    …(8分)
(Ⅲ)f'(x)=3x2-3(t+1)x+3t,令f'(x)=0得x=1,x=t
①當(dāng)t≤0時(shí),f(x)在(0,1)單調(diào)遞減,在(1,2)單調(diào)遞增,
∴?x0=1,使f(1)是f(x)在x∈[0,2]上的最小值,f(x)min=f(1)=
1
2
+
3
2
t
…(9分)
②當(dāng)0<t<1時(shí),f(x)在(0,t)和(1,2)單調(diào)遞增,在(t,1)單調(diào)遞減,∴
f(1)≤f(0)
0<t<1
1-
3(t+1)
2
+3t+1≤1
0<t<1
,解得0<t≤
1
3

當(dāng)0<t≤
1
3
時(shí),使f(1)是f(x)在x∈[0,2]上的最小值;  …(10分)
③當(dāng)t=1時(shí),f'(x)=3(x-1)2≥0,f(x)在(0,2)單調(diào)遞增,
不存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值;  …(11分)
④當(dāng)1<t<2時(shí),f(x)在(0,1)和(t,2)單調(diào)遞增,在(1,t)單調(diào)遞減,
f(t)≤f(0)
1<t<2
,
t3-
3(t+1)
2
t2+3t2+1≤1
1<t<2
,
t≥3
1<t<2
無(wú)實(shí)數(shù)解;  …(12分)
⑤當(dāng)t≥2時(shí),f(x)在(0,1)單調(diào)遞增,在(1,2)單調(diào)遞減,
∴x0∈(0,2)函數(shù)f(x)沒(méi)有最小值.     …(13分)
綜上,t∈(-∞,
1
3
]
時(shí),存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值.…(14分)
點(diǎn)評(píng):本題考查函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),利用導(dǎo)數(shù)求切線方程、函數(shù)單調(diào)區(qū)間等方法,考查運(yùn)算求解、分類(lèi)討論、探究解決問(wèn)題的能力,考查函數(shù)與方程、不等式思想、轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊邊長(zhǎng)分別為a,b,c,且
cosA
cosB
=
b
a
=
3
4

(1)判斷△ABC的形狀;  
(2)若c=15,則△ABC的面積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)P是曲線y=
1
2
x2
+lnx上的一點(diǎn),求過(guò)點(diǎn)P且與直線y=2x+1平行的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x-sinx-
1
3
ax3,其中a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)g(x)=f(x)+sinx的極值;
(2)當(dāng)a<0時(shí),證明:函數(shù)f(x)在R是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC的三個(gè)內(nèi)角分別為A,B,C,cosA=
1
3
,cosB=
2
2
3
.CD是∠ACB的角平分線.
(1)求角C的大;
(2)當(dāng)CD=8
2
-4,求AC,BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinxcosx+2
3
cos2x-
3
,x∈R.
(Ⅰ)求函數(shù)y=f(-3x)+1的最小正周期和單調(diào)遞減區(qū)間;
(Ⅱ)已知△ABC中的三個(gè)內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若銳角A滿(mǎn)足f(
A
2
-
π
6
)=
3
,且a=7,sinB+sinC=
13
3
14
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T(mén).其范圍為[0,10],分別有五個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶,晚高峰時(shí)段(T≥2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.
(Ⅰ)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?
(Ⅱ)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(Ⅲ)從(Ⅱ)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,y=f(x)是可導(dǎo)函數(shù),直線l是曲線y=f(x)在x=4處的切線,令g(x)=
f(x)
x
,則g′(4)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(2x2+1)5=a0+a1x2+a2x4+…+a5x10,則a3的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案