若點P是曲線y=
1
2
x2
+lnx上的一點,求過點P且與直線y=2x+1平行的切線方程.
考點:利用導數(shù)研究曲線上某點切線方程
專題:計算題,導數(shù)的概念及應用
分析:求導函數(shù),利用切線與直線y=2x+1平行,求得切點坐標,即可求出過點P且與直線y=2x+1平行的切線方程.
解答: 解:由題意,求導函數(shù)可得y′=x+
1
x

∵切線與直線y=2x+1平行,
∴x+
1
x
=2,
∴x=1,
∴切點坐標為(1,
1
2
),
∴過點P且與直線y=2x+1平行的切線方程為y-
1
2
=2(x-1),即4x-2y-3=0.
點評:本題考查導數(shù)知識的運用,考查導數(shù)的幾何意義,正確求導是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log2
x
4
,等比數(shù)列{an}中,a2•a5•a8=8,f(a1)+f(a2)+…+f(a9)=( 。
A、-9B、-8C、-7D、-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)y=
x2
x-1
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)的頂點坐標為(-
3
2
,49),且方程f(x)=0的兩個實根之差等于7,求此二次函數(shù)的解析式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=|ax-2|+|ax-a|(a>0).
(I)當a=1時,求f(x)≥x的解集;
(Ⅱ)若不存在實數(shù)x,使f(x)<3成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=
a•2x-a-1
2x-1
為奇函數(shù).
(1)確定實數(shù)a的值;
(2)求函數(shù)的定義域和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知動圓C:(x-m)2+(y-2m)2=m2(m>0)
(Ⅰ)當m=2時,求經(jīng)過原點且與圓C相切的直線l的方程;
(Ⅱ)若圓C與圓E:(x-3)2+y2=16內(nèi)切,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3-
3(t+1)
2
x2+3tx+1(t∈R).
(Ⅰ)若函數(shù)f(x)在點(2,f(2))處的切線與直線y=9x-2平行,求t的值;
(Ⅱ)設函數(shù)g(x)=f′(x)+3lnx-3x2,求函數(shù)g(x)的單調(diào)區(qū)間;
(Ⅲ)若存在x0∈(0,2),使得f(x0)是f(x)在x∈[0,2]上的最小值,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在由正數(shù)組成的等比數(shù)列{an}中,若a3a4a5=8,則log2a1+log2a2+…+log2a7=
 

查看答案和解析>>

同步練習冊答案