14.設(shè)F1,F(xiàn)2分別為橢圓${C_1}:\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$(a1>b1>0)與雙曲線${C_2}:\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1$(a2>b2>0)的公共焦點(diǎn),它們?cè)诘谝幌笙迌?nèi)交于點(diǎn)M,$∠{F_1}M{F_2}={90^0}$,若橢圓的離心率${e_1}∈[\frac{3}{4},\frac{{2\sqrt{2}}}{3}]$,則雙曲線C2的離心率e2的取值范圍為$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.

分析 利用橢圓與雙曲線的定義列出方程,通過(guò)勾股定理可得e1與e2的關(guān)系式,再由e1 的范圍求得e2的取值范圍.

解答 解:由橢圓與雙曲線的定義,知|MF1|+|MF2|=2a1,|MF1|-|MF2|=2a2,
∴|MF1|=a1+a2,|MF2|=a1-a2
∵∠F1MF2=90°,
∴$|M{F}_{1}{|}^{2}+|M{F}_{2}{|}^{2}=4{c}^{2}$,
即$({a}_{1}+{a}_{2})^{2}+({a}_{1}-{a}_{2})^{2}=4{c}^{2}$,得${{a}_{1}}^{2}+{{a}_{2}}^{2}=2{c}^{2}$,
∴$\frac{1}{{{e}_{1}}^{2}}+\frac{1}{{{e}_{2}}^{2}}=2$,則${e}_{2}=\frac{{e}_{1}}{\sqrt{2{{e}_{1}}^{2}-1}}$=$\sqrt{\frac{1}{2-\frac{1}{{{e}_{1}}^{2}}}}$.
∵${e_1}∈[\frac{3}{4},\frac{{2\sqrt{2}}}{3}]$,
∴e2∈$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.
故答案為:$[\frac{{2\sqrt{14}}}{7},\sqrt{2})$.

點(diǎn)評(píng) 本題考查雙曲線以及橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知圓C:x2+y2=9,分別按以下要求求出相應(yīng)概率:
(Ⅰ)若以連續(xù)擲兩次骰子分別得到的點(diǎn)數(shù)m,n作為點(diǎn)P的坐標(biāo),求點(diǎn)P落在圓C外部的概率;
(Ⅱ)在不等式組$\left\{\begin{array}{l}{0≤x≤3}\\{0≤y≤3}\end{array}\right.$所確定的區(qū)域內(nèi)任意取一點(diǎn)P(x,y),求點(diǎn)P落在圓C內(nèi)部的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在△ABC中,∠A,∠B,∠C所對(duì)的邊分別是a,b,c,當(dāng)鈍角三角形的三邊a,b,c是三個(gè)連續(xù)整數(shù)時(shí),則△ABC外接圓的半徑為( 。
A.$\frac{5}{2}$B.$\frac{8}{7}\sqrt{7}$C.$\frac{{16\sqrt{15}}}{15}$D.$\frac{{8\sqrt{15}}}{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.一個(gè)社會(huì)調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫(huà)了樣本的頻率分布直方圖(如圖),為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10000人中再用分層抽樣的方法抽出100人作進(jìn)一步調(diào)查,則在[2500,3000](元)月收入段應(yīng)抽出25人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知(x-$\frac{\sqrt{p}}{{x}^{2}}$)6的展開(kāi)式中的常數(shù)項(xiàng)是75,則常數(shù)p的值為( 。
A.25B.4C.5D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.根據(jù)“2015年國(guó)民經(jīng)濟(jì)和社會(huì)發(fā)展統(tǒng)計(jì)公報(bào)”中公布的數(shù)據(jù),從2011 年到2015 年,我國(guó)的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重(%)44.345.546.948.150.5
(Ⅰ)在所給坐標(biāo)系中作出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(Ⅱ)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(Ⅲ)按照當(dāng)前的變化趨勢(shì),預(yù)測(cè)2017 年我國(guó)第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計(jì)公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,$\sum_{i=1}^5{{x_i}{y_i}}=720.9$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知函數(shù)y=f(x)的圖象在點(diǎn)(-1,f(-1))處的切線方程是x+y-3=0,則f(-1)+f′(-1)的值是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.當(dāng)n是正整數(shù)時(shí),比較并證明n2與2n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,AB是圓的直徑,PA垂直于圓所在的平面,C是圓上的一點(diǎn),
E,F(xiàn)分別為PA,PC的中點(diǎn).
(1)求證:EF∥平面ABC
(2)求證:BC⊥平面PAC.

查看答案和解析>>

同步練習(xí)冊(cè)答案