【題目】已知函數(shù)

(1)判斷fx)的奇偶性,說(shuō)明理由;

(2)當(dāng)x>0時(shí),判斷fx)的單調(diào)性并加以證明;

(3)若f(2t)-mft)>0對(duì)于t∈(0,+∞)恒成立,求m的取值范圍.

【答案】(1)偶函數(shù),理由見(jiàn)解析;(2)在上是增函數(shù),證明見(jiàn)解析;(3).

【解析】

(1)利用的關(guān)系,結(jié)合定義域判斷奇偶性,即可得出答案.(2)換元法,轉(zhuǎn)化成對(duì)勾函數(shù),結(jié)合對(duì)勾函數(shù)性質(zhì),即可.(3)代入的解析式,建立關(guān)于s的新函數(shù),結(jié)合該函數(shù)單調(diào)性,計(jì)算最值,即可得出答案。

(1)∵函數(shù)fx)=3x+,定義域R,關(guān)于原點(diǎn)對(duì)稱,

且對(duì)一切xR,都有f(-x)=3-x+=+3x=fx)成立,

fx)是偶函數(shù).

綜上所述:fx)是偶函數(shù).

(2)函數(shù)fx)=3x+在(0,+∞)上是增函數(shù),

令3x=t,當(dāng)x>0時(shí),t>30=1,則y=g(t)=t+,

設(shè)1<t1t2,

gt1-gt2=t1+-t2+=t1t2-1

又由a∈0,)且1<t1t2,

0,t1t2-1>0,

gt1-gt2)<0,

函數(shù)y=t+t∈(1,+∞)上是增函數(shù),

即函數(shù)fx)在(0,+∞)上為增函數(shù).

(3)∵函數(shù)fx)=3x+,

f(2t)-mft)>0對(duì)于t∈(0,+∞)恒成立,

等價(jià)于:m(3t+)<32t+對(duì)于t∈(0,+∞)恒成立,

m(3t+)<(3t+2-2對(duì)于t∈(0,+∞)恒成立,

∵3t+>0,∴m<3t+-對(duì)于t∈(0,+∞)恒成立,

令3t+=s,∵t∈(0,+∞),

∴由(2)知:s>2,則ms-對(duì)于s∈(2,+∞)恒成立,

y=s-,在s∈(2,+∞)上是增函數(shù),

y>2-=1,

m≤1

m的取值范圍為(-∞,1],

綜上所述:m的取值范圍是(-∞,1].

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面為菱形,,側(cè)面是邊長(zhǎng)為的正三角形,側(cè)面底面

)設(shè)的中點(diǎn)為,求證:平面

)求斜線與平面所成角的正弦值.

在側(cè)棱上存在一點(diǎn),使得二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校調(diào)查了200名學(xué)生每周的自習(xí)時(shí)間(單位:小時(shí)),制成了如圖所示的頻率分布直方圖,其中自習(xí)時(shí)間的范圍是[17.5,30],樣本數(shù)據(jù)分組為[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根據(jù)直方圖,這200名學(xué)生中每周的自習(xí)時(shí)間不少于22.5小時(shí)的人數(shù)是( 。

A.56
B.60
C.120
D.140

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,其中m>0,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個(gè)不同的根,則m的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒(méi)猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是 ,乙每輪猜對(duì)的概率是 ;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0,b>0,若關(guān)于x,y的方程組 無(wú)解,則a+b的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿足:①對(duì)于任意實(shí)數(shù)x,y都有f(xy)+1=f(x)+f(x)f()=0;②當(dāng)x時(shí),f(x)<0.

(1)求證:f(x)=f(2x);

(2)用數(shù)學(xué)歸納法證明:當(dāng)x[,](nN*)時(shí), f(x)≤1-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=exx2+2ax.

(1)a=1,求曲線yf(x)在點(diǎn)(1,f(1))處的切線方程;

(2)f(x)R上單調(diào)遞增,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知五面體,其中內(nèi)接于圓是圓的直徑,四邊形為平行四邊形,且平面

(1)證明:平面平面;

(2)若,且二面角所成角的余弦值為,試求該幾何體的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案