一個袋子裝有大小形狀完全相同的9個球,其中5個紅球編號分別為1,2,3,4,5,4個白球編號分別為1,2,3,4,從袋中任意取出3個球.
(1)求取出的3個球編號都不相同的概率;
(2)記X為取出的3個球中編號的最小值,求X的分布列與數(shù)學期望.

(1)(2)

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某市職教中心組織廚師技能大賽,大賽依次設基本功(初賽)、面點制作(復賽)、熱菜烹制(決賽)三個輪次的比賽,已知某選手通過初賽、復賽、決賽的概率分別是,,且各輪次通過與否相互獨立.
(1)設該選手參賽的輪次為ξ,求ξ的分布列.
(2)對于(1)中的ξ,設“函數(shù)f(x)=3sinπ(x∈R)是偶函數(shù)”為事件D,求事件D發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球,2個黑球,乙箱子里裝有1個白球,2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎(每次游戲結束后將球放回原箱)
(1)求在一次游戲中
①摸出3個白球的概率;②獲獎的概率.
(2)求在兩次游戲中獲獎次數(shù)X的分布列及數(shù)學期望E(X).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在打靶訓練中,某戰(zhàn)士射擊一次的成績在9環(huán)(包括9環(huán))以上的概率是0.18,在8~9環(huán)(包括8環(huán))的概率是0.51,在7~8環(huán)(包括7環(huán))的概率是0.15,在6~7環(huán)(包括6環(huán))的概率是0.09.計算該戰(zhàn)士在打靶訓練中射擊一次取得8環(huán)(包括8環(huán))以上成績的概率和該戰(zhàn)士打靶及格(及格指6環(huán)以上包括6環(huán))的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了解某班學生喜愛打籃球是否與性別有關,對本班48人進行了問卷調(diào)查得到了如下的2×2列聯(lián)表:

 
喜愛打籃球
不喜愛打籃球
合計
男生
 
6
 
女生
10
 
 
合計
 
 
48
已知在全班48人中隨機抽取1人,抽到喜愛打籃球的學生的概率為.
(1)請將上面的2×2列聯(lián)表補充完整(不用寫計算過程);
(2)你是否有95%的把握認為喜愛打籃球與性別有關?說明你的理由;
(3)現(xiàn)從女生中抽取2人進一步調(diào)查,設其中喜愛打籃球的女生人數(shù)為X,求X的分布列與數(shù)學期望.
下面的臨界值表供參考:
P(χ2x0)或
P(K2k0)
0.10
0.05
0.010
0.005
x0(或k0)
2.706
3.841
6.635
7.879
 
(參考公式)χ2,其中nn11n12n21n22K2,其中nabcd)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某公司研制出一種新型藥品,為測試該藥品的有效性,公司選定個藥品樣本分成三組,測試結果如下表:

分組



藥品有效



藥品無效



已知在全體樣本中隨機抽取個,抽到組藥品有效的概率是
(1)現(xiàn)用分層抽樣的方法在全體樣本中抽取個測試結果,問應在組抽取樣本多少個? [來源:學優(yōu)]
(2)已知,求該藥品通過測試的概率(說明:若藥品有效的概率不小于%,則認為測試通過).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學在期末考試中的數(shù)學成績.乙組記錄中有一個數(shù)字模糊,無法確認,假設這個數(shù)字具有隨機性,并在圖中以表示.
 
(Ⅰ)若甲、乙兩個小組的數(shù)學平均成績相同,求的值;
(Ⅱ)求乙組平均成績超過甲組平均成績的概率;
(Ⅲ)當時,分別從甲、乙兩組中各隨機選取一名同學,記這兩名同學數(shù)學成績之差的絕對值為,求隨機變量的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為了參加2013年東亞運動會,從四支較強的排球隊中選出18人組成女子排球國家隊,隊員來源如下表:

對別
北京
上海
天津
廣州
人數(shù)
4
6
3
5
(1)從這18名對員中隨機選出兩名,求兩人來自同一個隊的概率;
(2)比賽結束后,若要求選出兩名隊員代表發(fā)言,設其中來自北京的人數(shù)為,求隨機變量的分布列,及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

由于某高中建設了新校區(qū),為了交通方便要用三輛通勤車從新校區(qū)把教師接到老校區(qū),已知從新校區(qū)到老校區(qū)有兩條公路,汽車走公路①堵車的概率為,不堵車的概率為;汽車走公路②堵車的概率為p,不堵車的概率為1-p,若甲、乙兩輛汽車走公路①,丙汽車由于其他原因走公路②,且三輛車是否堵車相互之間沒有影響.
(1)若三輛汽車中恰有一輛汽車被堵的概率為,求走公路②堵車的概率;
(2)在(1)的條件下,求三輛汽車中被堵車輛的個數(shù)ξ的分布列和數(shù)學期望.

查看答案和解析>>

同步練習冊答案