有甲乙兩個班級進行數(shù)學考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計成績后,得到如下的列聯(lián)表:
| 優(yōu)秀 | 非優(yōu)秀 | 總計 |
甲班 | 10 | | |
乙班 | | 30 | |
合計 | | | 105 |
(Ⅰ)列聯(lián)表見下面答案;(Ⅱ);(Ⅲ).
解析試題分析:(Ⅰ)利用“在全部的105人中隨機抽取1人為優(yōu)秀的概率為”求出在105人中優(yōu)秀的總?cè)藬?shù)為30人,從而就可以填出列聯(lián)表中所有的數(shù);(Ⅱ)直接寫出概率(Ⅲ)先寫出先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為的所有情況,共36種,再寫出“抽到6或10”的事件的所有情況共8種,所以概率為.
試題解析:(Ⅰ)從可知兩個班的優(yōu)秀生共30人,
3分 優(yōu)秀 非優(yōu)秀 總計 甲班 10 45 55 乙班 20 30 50 合計 30 75 105
(Ⅱ) 6分
(Ⅲ)設(shè)“抽到6或10”為事件,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點數(shù)為.所有的基本事件有共36個.事件包含的基本事件有:
共8個,∴
故抽到6號或10號的概率為. 12分
考點:1.列聯(lián)表;2.古典概型.
科目:高中數(shù)學 來源: 題型:解答題
某數(shù)學老師對本校2013屆高三學生某次聯(lián)考的數(shù)學成績進行分析,按1:50進行分層抽樣抽取的20名學生的成績進行分析,分數(shù)用莖葉圖記錄如圖所示(部分數(shù)據(jù)丟失),得到頻率分布表如下:
(1)求表中的值及分數(shù)在范圍內(nèi)的學生數(shù),并估計這次考試全校學生數(shù)學成績及格率(分數(shù)在范圍為及格);
(2)從大于等于110分的學生中隨機選2名學生得分,求2名學生的平均得分大于等于130分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)甲、乙等名同學參加某高校的自主招生面試,已知采用抽簽的方式隨機確定各考生的面試順序(序號為).
(Ⅰ)求甲、乙兩考生的面試序號至少有一個為奇數(shù)的概率;
(Ⅱ)記在甲、乙兩考生之間參加面試的考生人數(shù)為,求隨機變量的分布列與期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某高校在2013年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績共分五組,得到頻率分布表如下表所示。
組號 | 分組 | 頻數(shù) | 頻率 |
第一組 | [160,165) | 5 | 0.05 |
第二組 | [165,170) | 35 | 0.35 |
第三組 | [170,175) | 30 | a |
第四組 | [175,180) | b | 0.2 |
第五組 | [180,185) | 10 | 0.1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了解某校高三畢業(yè)班報考體育專業(yè)學生的體重(單位:千克)情況,將從該市某學校抽取的樣本數(shù)據(jù)整理后得到如下頻率分布直方圖.已知圖中從左至右前3個小組的頻率之比為1:2:3,其中第2小組的頻數(shù)為12.
(Ⅰ)求該校報考體育專業(yè)學生的總?cè)藬?shù)n;
(Ⅱ)若用這所學校的樣本數(shù)據(jù)來估計該市的總體情況,現(xiàn)從該市報考體育專業(yè)的學生中任選3人,設(shè)表示體重超過60千克的學生人數(shù),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了了解市民的態(tài)度,在普通行人中隨機選取了200人進行調(diào)查,得到如下數(shù)據(jù):
處罰金額x(元) | 0 | 5 | 10 | 15 | 20 |
會闖紅燈的人數(shù)y | 80 | 50 | 40 | 20 | 10 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某射手每次射擊擊中目標的概率均為,且每次射擊的結(jié)果互不影響
(I)假設(shè)這名射手射擊3次,求至少2次擊中目標的概率
(II)假設(shè)這名射手射擊3次,每次擊中目標10分,未擊中目標得0分,在3次射擊中,若有兩次連續(xù)擊中目標,而另外一次未擊中目標,則額外加5分;若3次全部擊中,則額外加10分。用隨機變量§表示射手射擊3次后的總得分,求§的分布列和數(shù)學期望。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲、乙兩位籃球運動員進行定點投籃,甲投籃一次命中的概率為,乙投籃一次命中的概率為.每人各投4個球,兩人投籃命中的概率互不影響.
(1)求甲至多命中1個球且乙至少命中1個球的概率;
(2)若規(guī)定每投籃一次命中得3分,未命中得分,求乙所得分數(shù)的概率分布和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某校中學生籃球隊假期集訓,集訓前共有6個籃球,其中3個是新球(即沒有用過的球),3個是舊球(即至少用過一次的球).每次訓練,都從中任意取出2個球,用完后放回.
(Ⅰ)設(shè)第一次訓練時取到的新球個數(shù)為,求的分布列和數(shù)學期望;
(Ⅱ)求第二次訓練時恰好取到一個新球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com