【題目】某次聯歡會要安排個歌舞類節(jié)目、個小品類節(jié)目和個相聲類節(jié)目的演出順序,則同類節(jié)目不相鄰的排法種數是( )
A. B. C. D.
【答案】A
【解析】分析:根據題意,分2步進行分析,現將3個歌舞類全排列,再因為3個歌舞類節(jié)目不能相鄰,則分2種情況討論中間2個空位安排情況,由分步計數原理計算每一步的情況數目,進而由分類計數原理即可得到答案.
詳解:分2步進行分析:
(1)先將3個歌舞類節(jié)目全排列,有種情況,排好后,由4個空位;
(2)因為3個歌舞類節(jié)目不能相鄰,則中間2個空位必須安排2個節(jié)目,
分為2種情況:
①將中間2個空位安排1個小品類節(jié)目和1個相聲類節(jié)目,有種情況,排好后,最后1個小品類節(jié)目放在兩端,有2中情況,此時同類節(jié)目不相鄰的排法共有種,
②將中間2個空位安排2個小品類節(jié)目,有種情況,排好后,有6個空位,相聲類解有6個空位可選,即有6種情況,此時同類節(jié)目不相鄰的排法種數是種,則同類節(jié)目不相鄰的排法種數是種,故選A.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,ABCD為矩形,平面PAD⊥平面ABCD.
(1)求證:AB⊥PD;
(2)若∠BPC=90°,PB= ,PC=2,問AB為何值時,四棱錐P﹣ABCD的體積最大?并求此時平面BPC與平面DPC夾角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高級中學共有學生2000名,各年級男、女生人數如下表:
高一年級 | 高二年級 | 高三年級 | |
女生 | 373 | x | y |
男生 | 377 | 370 | z |
已知在全校學生中隨機抽取1名,抽到高二年級女生的概率是0.19.
(1)求的值;
(2)現用分層抽樣的方法在全校抽取48名學生,問應該在高三年級抽取多少名?
(3)已知,,求高三年級中女生比男生多的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為.
(Ⅰ)設表示一輛車從甲地到乙地遇到紅燈的個數,求隨機變量的分布列和數學期望;
(Ⅱ)若有2輛車獨立地從甲地到乙地,求這2輛車共遇到1個紅燈的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某實驗室一天的溫度(單位:℃)隨時間t(單位:h)的變化近似滿足函數關系:
f(t)=10﹣ ,t∈[0,24)
(1)求實驗室這一天的最大溫差;
(2)若要求實驗室溫度不高于11℃,則在哪段時間實驗室需要降溫?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的命題的序號為__________.
①已知隨機變量服從二項分布,若,,則;
②將一組數據中的每個數據都加上同一個常數后,方差恒不變;
③設隨機變量服從正態(tài)分布,若,則;
④某人在次射擊中,擊中目標的次數為,,則當時概率最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家具廠有方木料90 ,五合板600,準備加工成書桌和書櫥出售.已知生產每張書桌需要方木料0.1 ,五合板2 ,生產每個書櫥需要方木料0.2,五合板1 ,出售一張書桌可獲利潤80元,出售一個書櫥可獲利潤120元.請問怎樣安排生產可使所得利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據一組樣本數據(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是
A. y與x具有正的線性相關關系
B. 回歸直線過樣本點的中心(,)
C. 若該大學某女生身高增加1cm,則其體重約增加0.85kg
D. 若該大學某女生身高為170cm,則可斷定其體重比為58.79kg
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com