【題目】已知函數(shù)f(x)=4x﹣2x , 實數(shù)s,t滿足f(s)+f(t)=0,a=2s+2t , b=2s+t
(1)當函數(shù)f(x)的定義域為[﹣1,1]時,求f(x)的值域;
(2)求函數(shù)關系式b=g(a),并求函數(shù)g(a)的定義域D;
(3)在(2)的結論中,對任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求實數(shù)m的取值范圍.

【答案】
(1)解:∵函數(shù)f(x)=4x﹣2x,f(x)的定義域為[﹣1,1]時,

∴t=2x∈[ ,2],g(t)=t2﹣t單調(diào)遞增,

∵g( )=﹣ ,g(2)=2,

∴f(x)的值域為:[﹣ ,2].


(2)解:∵f(s)+f(t)=0,

∴4s﹣2s+4t﹣2t=0,

化簡得出:(2s+2t2﹣22s+t﹣(2s+2t)=0,

∵a=2s+2t,b=2s+t.2s+2t≥2 .a(chǎn)≥2

∴a2﹣2b﹣a=0,a≥2 ,a≥2 ,a>0

即b= ,1<a≤2,D=(1,2];


(3)解:g(x)= (x2﹣x)∈(0,1],f(x)∈[﹣ ,2].

∵對任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,

∴(0,1][﹣ +m,2+m].

∴﹣1≤m≤


【解析】(1)換元根據(jù)t=2x∈[ ,2],g(t)=t2﹣t單調(diào)遞增,即可求f(x)的值域;(2)配方得出:(2s+2t2﹣22s+t﹣(2s+2t)=0,a2﹣2b﹣a=0,a≥2 ,a≥2 ,a>0,求解即可得出b= ,1<a≤2;(3)g(x)= (x2﹣x)∈(0,1],f(x)∈[﹣ ,2],對任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,即可求實數(shù)m的取值范圍.
【考點精析】解答此題的關鍵在于理解函數(shù)的最值及其幾何意義的相關知識,掌握利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(。┲;利用圖象求函數(shù)的最大(。┲担焕煤瘮(shù)單調(diào)性的判斷函數(shù)的最大(。┲,以及對二次函數(shù)的性質(zhì)的理解,了解當時,拋物線開口向上,函數(shù)在上遞減,在上遞增;當時,拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知遞增數(shù)列{an},a1=2,其前n項和為Sn , 且滿足3(Sn+Sn1)= +2(n≥2).
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 =n,求其前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 的定義域為R.
(Ⅰ)求m的取值范圍;
(Ⅱ)若m的最大值為n,解關于x的不等式:|x﹣3|﹣2x≤2n﹣4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某次數(shù)學測試之后,數(shù)學組的老師對全校數(shù)學總成績分布在[105,135)的n名同學的19題成績進行了分析,數(shù)據(jù)整理如下:

組數(shù)

分組

19題滿分人數(shù)

19題滿分人數(shù)占本組人數(shù)比例

第一組

[105,110]

15

0.3

第二組

[110,115)

30

0.3

第三組

[115,120)

x

0.4

第四組

[120,125)

100

0.5

第五組

[125,130)

120

0.6

第六組

[130,135)

195

y

(Ⅰ)補全所給的頻率分布直方圖,并求n,x,y的值;
(Ⅱ)現(xiàn)從[110,115)、[115,120)兩個分數(shù)段的19題滿分的試卷中,按分層抽樣的方法抽取9份進行展出,并從9份試卷中選出兩份作為優(yōu)秀試卷,優(yōu)秀試卷在[115,120)中的分數(shù)記為ξ,求隨機變量ξ的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P(2,0),且正方形ABCD內(nèi)接于⊙O:x2+y2=1,M、N分別為邊AB、BC的中點.當正方形ABCD繞圓心O旋轉時, 的取值范圍為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}的公差d≠0,Sn為其前n項和,若a2 , a3 , a6成等比數(shù)列,且a10=﹣17,則 的最小值是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=alnx﹣ax﹣3(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數(shù)g(x)=x3+x2(f'(x)+ )在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍;
(Ⅲ)求證: × × ×…× (n≥2,n∈N*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|sinx|(x∈[﹣π,π]),g(x)=x﹣2sinx(x∈[﹣π,π]),設方程f(f(x))=0,f(g(x))=0,g(g(x))=0的實根的個數(shù)分別為m,n,t,則m+n+t=(
A.9
B.13
C.17
D.21

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xoy 中,直線l的參數(shù)方程為 ,(t為參數(shù)).在極坐標系(與直角坐標系xoy取相同的長度單位,且以原點o為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ. (Ⅰ)求圓C在直角坐標系中的方程;
(Ⅱ)若圓C與直線l相切,求實數(shù)a的值.

查看答案和解析>>

同步練習冊答案