【題目】在直角坐標(biāo)系xoy 中,直線l的參數(shù)方程為 ,(t為參數(shù)).在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的長度單位,且以原點o為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=4cosθ. (Ⅰ)求圓C在直角坐標(biāo)系中的方程;
(Ⅱ)若圓C與直線l相切,求實數(shù)a的值.

【答案】解:(Ⅰ)由ρ=4cosθ得ρ2=4ρcosθ, 結(jié)合極坐標(biāo)與直角坐標(biāo)的互化公式得x2+y2=4x,
即(x﹣2)2+y2=4
(Ⅱ)由直線l的參數(shù)方程為 ,化為普通方程,得x﹣ y﹣a=0.
結(jié)合圓C與直線l相切,得 =2,解得a=﹣2或6
【解析】(I)利用 x=ρcosθ,y=ρsinθ可將圓C的極坐標(biāo)方程ρ=4cosθ化為普通方程;(II)據(jù)點到直線的距離公式即可求出答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4x﹣2x , 實數(shù)s,t滿足f(s)+f(t)=0,a=2s+2t , b=2s+t
(1)當(dāng)函數(shù)f(x)的定義域為[﹣1,1]時,求f(x)的值域;
(2)求函數(shù)關(guān)系式b=g(a),并求函數(shù)g(a)的定義域D;
(3)在(2)的結(jié)論中,對任意x1∈D,都存在x2∈[﹣1,1],使得g(x1)=f(x2)+m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐P﹣ABC中,PA=PC,底面ABC為正三角形.
(Ⅰ)證明:AC⊥PB;
(Ⅱ)若平面PAC⊥平面ABC,AC=PC=2,求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),該學(xué)校對100名高一新生進(jìn)行了問卷調(diào)查,得到如下列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

10

女生

20

合計

已知在這100人中隨機抽取1人抽到喜歡游泳的學(xué)生的概率為
下面的臨界值表僅供參考:

P(K2≥k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式: ,其中n=a+b+c+d)
(1)請將上述列聯(lián)表補充完整:并判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由;
(2)針對于問卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取6人成立游泳科普知識宣傳組,并在這6人中任選2人作為宣傳組的組長,設(shè)這兩人中男生人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知bcosC=(2a﹣c)cosB. (Ⅰ)求B;
(Ⅱ)若c=2,b=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}中,an+2﹣2an+1+an=1(n∈N*),a1=1,a2=3..
(1)求證:{an+1﹣an}是等差數(shù)列;
(2)求數(shù)列{ }的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在一個邊長為1的正方形AOBC內(nèi),曲線y=x3(x>0)和曲線y= 圍成一個葉形圖(陰影部分),向正方形AOBC內(nèi)隨機投一點(該點落在正方形AOBC內(nèi)任何一點是等可能的),則所投的點落在葉形圖內(nèi)部的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=lg(x+m)(m∈R);
(1)當(dāng)m=2時,解不等式 ;
(2)若f(0)=1,且 在閉區(qū)間[2,3]上有實數(shù)解,求實數(shù)λ的范圍;
(3)如果函數(shù)f(x)的圖像過點(98,2),且不等式f[cos(2nx)]<lg2對任意n∈N均成立,求實數(shù)x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 =(cosα,sinα), =(cosβ,sinβ),其中0<α<β<π.
(1)求證: 互相垂直;
(2)若k ﹣k 的長度相等,求β﹣α的值(k為非零的常數(shù)).

查看答案和解析>>

同步練習(xí)冊答案