【題目】如下圖在空間直角坐標(biāo)系,正四面體(各條棱均相等的三棱錐)的頂點(diǎn)分別在, 軸上.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值.

【答案】見(jiàn)解析.

【解析】試題分析:

設(shè),寫出A,B,C的坐標(biāo),再求出D點(diǎn)坐標(biāo),從而得的坐標(biāo),只要它與平面的法向量垂直,即可證明線面平行;

求二面角,可取AB的中點(diǎn)F,由能證明∠CFD是所求二面角的平面角,在中由得余弦定理可得余弦值.也可求出二面角的兩個(gè)面的法向量,由法向量夾角的余弦可得二面角的余弦.

試題解析:

(Ⅰ)由,易知.

設(shè),, , ,

設(shè)點(diǎn)的坐標(biāo)為,則由,

可得 ,

解得

所以.

又平面的一個(gè)法向量為

所以,所以平面.

(Ⅱ)設(shè)的中點(diǎn),連接

, , 為二面角的平面角.

由(Ⅰ)知,在, , ,

則由余弦定理知,即二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某購(gòu)物網(wǎng)站對(duì)在7座城市的線下體驗(yàn)店的廣告費(fèi)指出(萬(wàn)元)和銷售額(萬(wàn)元)的數(shù)據(jù)統(tǒng)計(jì)如下表:

城市

廣告費(fèi)支出

銷售額

(Ⅰ)若用線性回歸模型擬合關(guān)系,求關(guān)于的線性回歸方程;

(Ⅱ)若用對(duì)數(shù)函數(shù)回歸模型擬合的關(guān)系,可得回歸方程,經(jīng)計(jì)算對(duì)數(shù)函數(shù)回歸模型的相關(guān)系數(shù)約為,請(qǐng)說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)城市的廣告費(fèi)用支出萬(wàn)元時(shí)的銷售額.

參考數(shù)據(jù): , , , , .

參考公式: , .

相關(guān)系數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實(shí)施階梯水價(jià),階梯水價(jià)原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價(jià):若用水量不超過(guò)12噸時(shí),按4元/噸計(jì)算水費(fèi);若用水量超過(guò)12噸且不超過(guò)14噸時(shí),超過(guò)12噸部分按6.60元/噸計(jì)算水費(fèi);若用水量超過(guò)14噸時(shí),超過(guò)14噸部分按7.8元/噸計(jì)算水費(fèi).為了了解全市居民月用水量的分布情況,通過(guò)抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照分成8組,制成了如圖1所示的頻率分布直方圖.

(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計(jì)全市的居民用水情況.

(。┈F(xiàn)從全市居民中依次隨機(jī)抽取5戶,求這5戶居民恰好3戶居民的月用水量都超過(guò)12噸的概率;

(ⅱ)試估計(jì)全市居民用水價(jià)格的期望(精確到0.01);

(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費(fèi)(元)與月份的散點(diǎn)圖,其擬合的線性回歸方程是.若李某201617月份水費(fèi)總支出為294.6元,試估計(jì)李某7月份的用水噸數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),過(guò)點(diǎn)且與軸垂直的直線為, 軸,交于點(diǎn),直線垂直平分,交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)記點(diǎn)的軌跡為曲線,直線與曲線交于不同兩點(diǎn),且為常數(shù)),直線平行,且與曲線相切,切點(diǎn)為,試問(wèn)的面積是否為定值.若為定值,求出的面積;若不是定值,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次有600人參加的數(shù)學(xué)測(cè)試,其成績(jī)的頻數(shù)分布表如圖所示,規(guī)定85分及其以上為優(yōu)秀.

區(qū)間

[75,80)

[80,85)

[85,90)

[90,95)

[95,100]

人數(shù)

36

114

244

156

50

(Ⅰ)現(xiàn)用分層抽樣的方法從這600人中抽取20人進(jìn)行成績(jī)分析,求其中成績(jī)?yōu)閮?yōu)秀的學(xué)生人數(shù);

(Ⅱ)在(Ⅰ)中抽取的20名學(xué)生中,要隨機(jī)選取2名學(xué)生參加活動(dòng),記“其中成績(jī)?yōu)閮?yōu)秀的人數(shù)”為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018河南安陽(yáng)市高三一模如下圖,在平面直角坐標(biāo)系直線與直線之間的陰影部分即為,區(qū)域中動(dòng)點(diǎn)的距離之積為1

)求點(diǎn)的軌跡的方程;

)動(dòng)直線穿過(guò)區(qū)域,分別交直線兩點(diǎn),若直線與軌跡有且只有一個(gè)公共點(diǎn),求證 的面積恒為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}(nN*),首項(xiàng)a13,前n項(xiàng)和為Sn,且S3a3、S5a5,S4a4成等差數(shù)列.

1)求數(shù)列{an}的通項(xiàng)公式;

2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn[ab],求ba的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,等比數(shù)列{bn}的前n項(xiàng)和為Tn,a1=﹣1,b1=1,a2+b2=2.

(1)若a3+b3=5,求{bn}的通項(xiàng)公式;

(2)若T3=21,求S3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線的極坐標(biāo)方程是,以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立極坐標(biāo)系,曲線的參數(shù)方程為為參數(shù).

(1)寫出直線的普通方程與曲線的直角坐標(biāo)方程;

(2)設(shè)為曲線上任意一點(diǎn),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案