【題目】某糧庫擬建一個(gè)儲(chǔ)糧倉如圖所示,其下部是高為2的圓柱,上部是母線長為2的圓錐,現(xiàn)要設(shè)計(jì)其底面半徑和上部圓錐的高,若設(shè)圓錐的高,儲(chǔ)糧倉的體積為.

(1)求關(guān)于的函數(shù)關(guān)系式;(圓周率用表示)

(2)求為何值時(shí),儲(chǔ)糧倉的體積最大.

【答案】, ..

【解析】試題分析:(Ⅰ)由題圓錐和圓柱的底面半徑 可得儲(chǔ)糧倉的體積, .

)利用導(dǎo)數(shù)求(Ⅰ)中的函數(shù)最值即可.

試題解析:(Ⅰ)∵圓錐和圓柱的底面半徑 .

,即, .

,令

解得, .又(舍去).

當(dāng)變化時(shí), 的變化情況如下表:

故當(dāng)時(shí),儲(chǔ)糧倉的體積最大.

點(diǎn)晴:研究數(shù)學(xué)模型,建立數(shù)學(xué)模型,進(jìn)而借鑒數(shù)學(xué)模型,對提高解決實(shí)際問題的能力,以及提高數(shù)學(xué)素養(yǎng)都是十分重要的.建立模型的步驟可分為: (1) 分析問題中哪些是變量,哪些是常量,分別用字母表示; (2) 根據(jù)所給條件,運(yùn)用數(shù)學(xué)知識(shí),確定等量關(guān)系; (3) 寫出f(x)的解析式并指明定義域.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)若函數(shù)的單調(diào)遞減區(qū)間為,求函數(shù)的圖像在點(diǎn)處的切線方程;

(2)若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)求函數(shù)的定義域;

(2)判斷函數(shù)的奇偶性,并予以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (φ為參數(shù),0≤φ≤π),曲線C2的參數(shù)方程為 (t為參數(shù)).
(1)求C1的普通方程并指出它的軌跡;
(2)以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,射線OM:θ= 與半圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D在△ABC的BC邊上,且∠DAC=90°,cosC= ,AB=6,BD= ,則ADsin∠BAD=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線a、b和平面,下列說法中正確的有______

,則;

,則;

,則;

若直線,直線,則

若直線a在平面外,則

直線a平行于平面內(nèi)的無數(shù)條直線,則

若直線,那么直線a就平行于平面內(nèi)的無數(shù)條直線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(α>b>0)的右焦點(diǎn)到直線x﹣y+3 =0的距離為5,且橢圓的一個(gè)長軸端點(diǎn)與一個(gè)短軸端點(diǎn)間的距離為
(1)求橢圓C的方程;
(2)在x軸上是否存在點(diǎn)Q,使得過Q的直線與橢圓C交于A、B兩點(diǎn),且滿足 + 為定值?若存在,請求出定值,并求出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓.如圖所示,斜率為且不過原點(diǎn)的直線交橢圓兩點(diǎn),線段的中點(diǎn)為,射線交橢圓于點(diǎn),交直線于點(diǎn).

Ⅰ)求的最小值;

Ⅱ)若,

求證:直線過定點(diǎn);

ii)試問點(diǎn)能否關(guān)于軸對稱?若能,求出此時(shí)的外接圓方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,c>0,函數(shù)f(x)=|x﹣a|+|x+b|+c的最小值為1.
(1)求a+b+c的值;
(2)求證:a2+b2+c2

查看答案和解析>>

同步練習(xí)冊答案