在△ABC中,內(nèi)角A,B,C所對(duì)邊長分別為,,, .
(1)求的最大值及的取值范圍;
(2)求函數(shù)的最值. (本題滿分12分)

(1)的最大值為16,0<
(2)。   。     

解析試題分析:①,所以;又由余弦定理得:,所以,又,所以0<
      …………………………8分
因?yàn)?<,所以, ,………………10分
當(dāng),即時(shí),。   ……………………11分
當(dāng),即時(shí),。     ……………………12分
考點(diǎn):本題考查基本不等式和三角函數(shù)的化一公式及利用三角函數(shù)的單調(diào)性求最值問題。
點(diǎn)評(píng):三角函數(shù)和其他知識(shí)點(diǎn)相結(jié)合往往是第一道大題,一般較為簡單,應(yīng)該是必得分的題目。而有些同學(xué)在學(xué)習(xí)中認(rèn)為這類題簡單,自己一定會(huì),從而忽略了對(duì)它的練習(xí),因此導(dǎo)致考試時(shí)不能得滿分,甚至不能得分。比如此題在第二問中,就較易忘掉應(yīng)用第一問求出的范圍。因此我們?cè)谄匠S?xùn)練的時(shí)候就要要求自己“會(huì)而對(duì),對(duì)而全”。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
(1)求值
(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)為打入國際市場,決定從A、B兩種產(chǎn)品中只選擇一種進(jìn)行投資生產(chǎn).已
知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)

項(xiàng)目類別
 
年固定成本
 
每件產(chǎn)品成本
 
每件產(chǎn)品銷售價(jià)
 
每年最多可生產(chǎn)的件數(shù)
 
A產(chǎn)品
 
10
 
m
 
5
 
100
 
B產(chǎn)品
 
20
 
4
 
9
 
60
 
其中年固定成本與年生產(chǎn)的件數(shù)無關(guān),m為待定常數(shù),其值由生產(chǎn)A產(chǎn)品的原材料價(jià)格決定,預(yù)計(jì)m∈[3,4].另外,年銷售x件B產(chǎn)品時(shí)需上交0.05x2萬美元的特別關(guān)稅.假設(shè)生產(chǎn)出來的產(chǎn)品都能在當(dāng)年銷售出去.
(1)寫出該廠分別投資生產(chǎn)A、B兩種產(chǎn)品的年利潤y1,y2與生產(chǎn)相應(yīng)產(chǎn)品的件數(shù)x之間的函數(shù)關(guān)系并指明其定義域;
(2)如何投資才可獲得最大年利潤?請(qǐng)你做出規(guī)劃.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分13分)
(1)求值: ;
(2)求值: (lg2)2+lg5·lg20+ lg100;
(3)已知. 求a、b,并用表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知,設(shè)函數(shù)= ax2 +x-3alnx.
(I)求函數(shù)的單調(diào)區(qū)間;
(II)當(dāng)a=-1時(shí),證明:≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題12分)某公司是專門生產(chǎn)健身產(chǎn)品的企業(yè),第一批產(chǎn)品上市銷售40天內(nèi)全部售完,該公司對(duì)第一批產(chǎn)品上市后的市場銷售進(jìn)行調(diào)研,結(jié)果如圖(1)、(2)所示.其中(1)的拋物線表示的是市場的日銷售量與上市時(shí)間的關(guān)系;(2)的折線表示的是每件產(chǎn)品的銷售利潤與上市時(shí)間的關(guān)系.

(1)寫出市場的日銷售量與第一批產(chǎn)品A上市時(shí)間t的關(guān)系式;
(2)第一批產(chǎn)品A上市后的第幾天,這家公司日銷售利潤最大,最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(文科題)(本小題12分)
要建造一個(gè)無蓋長方體水池,底面一邊長固定為8m,最大裝水量為72m,池底和池壁的造價(jià)分別為2元/、元/,怎樣設(shè)計(jì)水池底的另一邊長和水池的高,才能使水池的總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)某公司生產(chǎn)的新產(chǎn)品的成本是2元/件,售價(jià)是3元/件,
年銷售量為10萬件,為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是(萬元)時(shí),產(chǎn)品的銷售量將是原銷售量的倍,且的二次函數(shù),它們的關(guān)系如下表:


···
1
2
···
5
···

···
1.5
1.8
···
1.5
···
 
(2)求的函數(shù)關(guān)系式;
(3)如果利潤=銷售總額成本費(fèi)廣告費(fèi),試寫出年利潤S(萬元)與廣告費(fèi)(萬元)的函數(shù)關(guān)系式;并求出當(dāng)廣告費(fèi)為多少萬元時(shí),年利潤S最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知y=是二次函數(shù),且f(0)=8及f(x+1)-f(x)=-2x+1
(1)求的解析式;
(2)求函數(shù)的單調(diào)遞減區(qū)間及值域..

查看答案和解析>>

同步練習(xí)冊(cè)答案