函數(shù)f(x)=
1
3
x3-x-5
,x∈R的單調(diào)遞減區(qū)間是
 
考點:利用導數(shù)研究函數(shù)的單調(diào)性
專題:導數(shù)的綜合應用
分析:根據(jù)f(x)的導函數(shù)建立不等關系,可得f′(0)<0,建立不等量關系,求出單調(diào)遞減區(qū)間即可.
解答: 解:∵f(x)=
1
3
x3-x-5
,
∴f′(x)=x2-1,
∴由x2-1<0可得:
∴x∈(-1,1).
故答案為:(-1,1).
點評:本小題主要考查運用導數(shù)研究函數(shù)的單調(diào)性等基礎知識,考查分析和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y=
1
8
x2與雙曲線
y2
a2
-x2=1(a>0)有共同的焦點F,O為坐標原點,P在x軸上方且在雙曲線上,則
OP
FP
的最小值為( 。
A、2
3
-3
B、3-2
3
C、
7
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,已知a2+b2=2013c2,求證:
2sinAsinBcosC
sin2(A+B)
為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

三條直線l1:2x-y-10=0,l2:4x+3y-10=0,l3:ax+2y-8=0
(1)求l1與l2的夾角大小.(用反三角函數(shù)表示)
(2)若三條直線l1,l2,l3不能圍成一個三角形,求a的所有可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求函數(shù)f(x)=x(x-1)(x-2)…(x-2010)在點x=0處的導數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ex+e-x
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明函數(shù)f(x)在(0,+∞)上是單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在一個邊長為2的正方形中隨機撒入200粒豆子,恰有120粒落在陰影區(qū)域內(nèi),則該陰影部分的面積約為( 。
A、
3
5
B、
12
5
C、
2
5
D、
18
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個容量為M的樣本數(shù)據(jù),其頻率分布表如表.
分組頻數(shù)頻率
(10,20]20.10
(20,30]3
 
 
(30,40]40.20
(40,50]
 
 

 
 
(50,60]40.20
(60,70]20.10
合計
 
 
1.00
(Ⅰ)完成頻率分布表;
(Ⅱ)畫出頻率分布直方圖;
(Ⅲ)利用頻率分布直方圖,估計總體的眾數(shù)、中位數(shù)及平均數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果命題p∨q為真命題,p∧q為假命題,那么( 。
A、命題p、q都是真命題
B、命題p、q都是假命題
C、命題p、q至少有一個是真命題
D、命題p、q只有一個真命題

查看答案和解析>>

同步練習冊答案