17.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{2,x>m}\\{{x^2}+4x+4,x≤m}\end{array}}\right.$的圖象與直線y=x恰有三個公共點,則實數(shù)m的取值范圍是(  )
A.(-∞,-1]B.[2,+∞)C.[-1,2]D.[-1,2)

分析 由題意可得只要滿足直線y=x和射線y=2(x>m)有一個交點,而且直線y=x與函數(shù)f(x)=x2+4x+2的兩個交點即可,畫圖便知,直線y=x與函數(shù)f(x)=x2+4x+2的圖象的兩個交點為(-2,-2)(-1,-1),由此可得實數(shù)m的取值范圍.

解答 解:由題意可得射線y=x與函數(shù)f(x)=2(x>m)有且只有一個交點.
而直線y=x與函數(shù)f(x)=x2+4x+2,至多兩個交點,
題目需要三個交點,則只要滿足直線y=x與函數(shù)f(x)=x2+4x+2的圖象有兩個交點即可,
畫圖便知,y=x與函數(shù)f(x)=x2+4x+2的圖象交點為A(-2,-2)、B(-1,-1),
故有 m≥-1.
而當(dāng)m≥2時,直線y=x和射線y=2(x>m)無交點,故實數(shù)m的取值范圍是[-1,2),
故選:D.

點評 本題主要考查函數(shù)與方程的綜合應(yīng)用,體現(xiàn)了轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知y=f′(x)是函數(shù)$f(x)=\frac{1}{3}{x^3}+2{x^2}+5$的導(dǎo)數(shù),則f′(1)=( 。
A.$\frac{22}{3}$B.10C.5D.$\frac{10}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在研究色盲與性別的關(guān)系調(diào)查中,調(diào)查了男性240人,其中有40人患色盲,調(diào)查的260名女性中有10人患色盲.
(Ⅰ)根據(jù)以上數(shù)據(jù)建立一個2×2列聯(lián)表;
(Ⅱ)能否有99.9%的把握認(rèn)為“性別與患色盲有關(guān)系”?
附1:隨機變量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
附2:臨界值參考表:
P(K2≥k00.100.050.0250.100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)命題P:?x∈R,ex>1,則¬P為( 。
A.?x∈R,ex=1B.?x∈R,ex>1C.?x∈R,ex≤1D.?x∈R,ex≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知f(x)=ex,g(x)=x+1.
(1)證明:f(x)≥g(x);
(2)求y=f(x),y=g(x)與x=-1所圍成的封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.對拋物線y=4x2,下列描述正確的是(  )
A.開口向右,焦點為(1,0)B.開口向上,焦點為(0,1)
C.開口向上,焦點為(0,$\frac{1}{16}$)D.開口向右,焦點為($\frac{1}{16}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.P($\sqrt{2}$,1)是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$上的一點,且|PF1|-|PF2|=2,若拋物線的頂點是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的中心,焦點是雙曲線的右頂點.
(1)求雙曲線的漸近線與拋物線的準(zhǔn)線方程;
(2)若直線l過點C(2,1)交拋物線于M,N兩點,是否存在直線l,使得C恰為弦MN的中點?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,角A,B,C的對邊分別為a,b,c,已知C=120°,b=1,S△ABC=$\sqrt{3}$,則c=( 。
A.$\sqrt{21}$B.$\sqrt{13}$C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知正方體ABCD-A1B1C1D1
(1)哪些棱所在直線與直線BA1是異面直線?
(2)哪些棱所在的直線與AA1垂直?
(3)求A1B與B1D1所成角;
(4)求AC與BD1所成角.

查看答案和解析>>

同步練習(xí)冊答案