設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,,以為圓心的圓相切于點(diǎn)的縱坐標(biāo)為,是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
( II)已知直線,交于兩點(diǎn),交于點(diǎn),且, 求的面積.
(I)拋物線為:,圓的方程為:;  ( II) .

試題分析:(I)根據(jù)拋物線的方程與準(zhǔn)線,可得,由的縱坐標(biāo)為,的縱坐標(biāo)為,即 ,,由題意可知:,則在等腰三角形中有,由于不重合,則.則拋物線與圓的方程就得出.
(II)根據(jù)題意可得三角形是直角三角形,又因,則的中點(diǎn),即解得.
聯(lián)立直線與拋物線方程得則由弦長公式得,又根據(jù)點(diǎn)到直線的距離得出的距離,從而得出.
試題解析:(I)根據(jù)拋物線的定義:有的縱坐標(biāo)為,的縱坐標(biāo)為
 ,,則,又由
則拋物線為:,圓的方程為:
( II)由,
根據(jù)題意可得三角形是直角三角形,又因,則的中點(diǎn),即解得.
,根據(jù)點(diǎn)到直線的距離得出的距離,從而得出.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知橢圓的左焦點(diǎn)為,且橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)橢圓的上下頂點(diǎn)分別為,是橢圓上異于的任一點(diǎn),直線分別交軸于點(diǎn),證明:為定值,并求出該定值;
(3)在橢圓上,是否存在點(diǎn),使得直線與圓相交于不同的兩點(diǎn),且的面積最大?若存在,求出點(diǎn)的坐標(biāo)及對應(yīng)的的面積;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為.從這個(gè)圓上任意一點(diǎn)軸作垂線,為垂足.
(Ⅰ)求線段中點(diǎn)的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點(diǎn),求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且過點(diǎn).

(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)與圓相切的直線交拋物線于不同的兩點(diǎn)若拋物線上一點(diǎn)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為原點(diǎn),長軸長為,一條準(zhǔn)線的方程為.
(Ⅰ)求該橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)射線與橢圓的交點(diǎn)為,過作傾斜角互補(bǔ)的兩條直線,分別與橢圓交于 兩點(diǎn)(兩點(diǎn)異于).求證:直線的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓過點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線、分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)到定點(diǎn)的距離之和為.
(Ⅰ)求動(dòng)點(diǎn)軌跡的方程;
(Ⅱ)設(shè),過點(diǎn)作直線,交橢圓異于兩點(diǎn),直線的斜率分別為,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點(diǎn),如果動(dòng)點(diǎn)滿足,則點(diǎn)的軌跡所包圍的圖形的面積等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知曲線,曲線,P是平面上一點(diǎn),若存在過點(diǎn)P的直線與都有公共點(diǎn),則稱P為“C1—C2型點(diǎn)”.

(1)在正確證明的左焦點(diǎn)是“C1—C2型點(diǎn)”時(shí),要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線有公共點(diǎn),求證,進(jìn)而證明原點(diǎn)不是“C1—C2型點(diǎn)”;
(3)求證:圓內(nèi)的點(diǎn)都不是“C1—C2型點(diǎn)”.

查看答案和解析>>

同步練習(xí)冊答案