已知一個(gè)圓的圓心為坐標(biāo)原點(diǎn),半徑為.從這個(gè)圓上任意一點(diǎn)軸作垂線,為垂足.
(Ⅰ)求線段中點(diǎn)的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點(diǎn),求的面積
(1);(2)

試題分析:(1)本題一般用動(dòng)點(diǎn)轉(zhuǎn)移法求軌跡方程,設(shè)動(dòng)點(diǎn)的坐標(biāo)為,則點(diǎn)的坐標(biāo)為,而點(diǎn)又是已知圓的點(diǎn),把點(diǎn)坐標(biāo)代入圓的方程即能求出動(dòng)點(diǎn)的軌跡方程;(2)直接列方程組求出交點(diǎn)的坐標(biāo),然后選用相應(yīng)面積公式計(jì)算面積(本題中以O(shè)B為底,高就是點(diǎn)A的縱坐標(biāo)的絕對(duì)值).
試題解析:(1)設(shè),         1分
由中點(diǎn)公式得:         3分
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025348597640.png" style="vertical-align:middle;" />在圓上,
的軌跡方程為        6分
(2)據(jù)已知        8分
        10分
        12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)F是拋物線C:的焦點(diǎn),S是拋物線C在第一象限內(nèi)的點(diǎn),且|SF|=.

(Ⅰ)求點(diǎn)S的坐標(biāo);
(Ⅱ)以S為圓心的動(dòng)圓與軸分別交于兩點(diǎn)A、B,延長(zhǎng)SA、SB分別交拋物線C于M、N兩點(diǎn);
①判斷直線MN的斜率是否為定值,并說(shuō)明理由;
②延長(zhǎng)NM交軸于點(diǎn)E,若|EM|=|NE|,求cos∠MSN的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知圓直線與圓相切,且交橢圓兩點(diǎn),是橢圓的半焦距,,
(Ⅰ)求的值;
(Ⅱ)O為坐標(biāo)原點(diǎn),若求橢圓的方程;
(Ⅲ) 在(Ⅱ)的條件下,設(shè)橢圓的左右頂點(diǎn)分別為A,B,動(dòng)點(diǎn),直線AS,BS與直線分別交于M,N兩點(diǎn),求線段MN的長(zhǎng)度的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知A(-5,0),B(5,0),動(dòng)點(diǎn)P滿足||,|,8成等差數(shù)列.
(1)求P點(diǎn)的軌跡方程;
(2)對(duì)于x軸上的點(diǎn)M,若滿足||·||=,則稱點(diǎn)M為點(diǎn)P對(duì)應(yīng)的“比例點(diǎn)”.問(wèn):對(duì)任意一個(gè)確定的點(diǎn)P,它總能對(duì)應(yīng)幾個(gè)“比例點(diǎn)”?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為,以為圓心的圓相切于點(diǎn),的縱坐標(biāo)為是圓軸除外的另一個(gè)交點(diǎn).
(I)求拋物線與圓的方程;
( II)已知直線,交于兩點(diǎn),交于點(diǎn),且, 求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

經(jīng)過(guò)點(diǎn)且與直線相切的動(dòng)圓的圓心軌跡為.點(diǎn)在軌跡上,且關(guān)于軸對(duì)稱,過(guò)線段(兩端點(diǎn)除外)上的任意一點(diǎn)作直線,使直線與軌跡在點(diǎn)處的切線平行,設(shè)直線與軌跡交于點(diǎn).
(1)求軌跡的方程;
(2)證明:
(3)若點(diǎn)到直線的距離等于,且的面積為20,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知?jiǎng)狱c(diǎn)與定點(diǎn)的距離和它到直線的距離之比是常數(shù),記的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點(diǎn),點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,試問(wèn):當(dāng)變化時(shí),直線軸是否交于一個(gè)定點(diǎn)?若是,請(qǐng)寫(xiě)出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)、分別為雙曲線的左、右焦點(diǎn),為雙曲線的左頂點(diǎn),以為直徑的圓交雙曲線某條漸過(guò)線、兩點(diǎn),且滿足,則該雙曲線的離心率為(    )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案