在△ABC中,若lgsinA-lgcosB-lgsinC=lg2,則△ABC的形狀是( 。
A、直角三角形B、等邊三角形C、不能確定D、等腰三角形
分析:利用對(duì)數(shù)的運(yùn)算法則可求得
sinA
cosB•sinC
=2,利用正弦定理求得cosB,同時(shí)根據(jù)余弦定理求得cosB的表達(dá)式進(jìn)而建立等式,整理求得b=c,判斷出三角形為等腰三角形.
解答:解:∵lgsinA-lgcosB-lgsinC=lg2,
sinA
cosB•sinC
=2,
由正弦定理可知
a
sinA
=
c
sinC

sinA
sinC
=
a
c

∴cosB=
a
2c
,
∴cosB=
a2+c2-b2
2ac
=
a
2c
,
整理得c=b,
∴△ABC的形狀是等腰三角形.
故選D
點(diǎn)評(píng):本題主要考查了正弦定理和余弦定理的應(yīng)用.解題的關(guān)鍵是利用正弦定理和余弦定理完成了邊角問題的互化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,若lg (1+sinA)=m,且lg
1
1-sinA
=n,則lgcosA等于( 。
A、
1
2
(m-n)
B、m-n
C、
1
2
(m+
1
n
D、m+
1
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①若tanθ=2,則sin2θ=
4
5

②函數(shù)f(x)=lg(x+
1+x2
)
是奇函數(shù);
③“a>b”是“2a>2b”的充分不必要條件;
④在△ABC中,若sinAcosB=sinC,則△ABC中是直角三角形.
其中所有真命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,真命題的個(gè)數(shù)為( 。
(1)在△ABC中,若A>B,則sinA>sinB;
(2)已知
AB
=(3,4),
CD
=(-2,-1)
,則
AB
CD
上的投影為-2;
(3)函數(shù)的y=lg(x2+ax+1)的值域?yàn)镽,則實(shí)數(shù)-2<a<2;
(4)已知函數(shù)f(x)=sin(ωx+
π
6
)-2
(ω>0)的導(dǎo)函數(shù)的最大值為3,則函數(shù)f(x)的圖象關(guān)于x=
π
3
對(duì)稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

出以下命題其中正確的命題有
①③④
①③④
(只填正確命題的序號(hào)).
①非零向量
a
,
b
滿足
a
b
,則|
a
+
b
|=|
a
-
b
|
a
b
>0,是
a
,
b
的夾角為銳角的充要條件;
③將y=lg(x-1)函數(shù)的圖象按向量
a
=(-1,0)平移,得到的圖象對(duì)應(yīng)的函數(shù)為y=lgx;
④在△ABC中,若(
AB
+
AC
)•(
AB
-
AC
)=0,則△ABC為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若lga-lgc=lgsinB=-lg,且∠B為銳角,則△ABC的形狀是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案