【題目】已知橢圓上一點關(guān)于原點的對稱點為,點 的面積為,直線上的點.

1)求的方程;

2)設(shè)的短軸端點,直線過點,證明:四邊形的兩條對角線的交點在定直線上.

【答案】1;(2)證明見解析

【解析】

1)根據(jù)已知可得,根據(jù)橢圓的對稱性結(jié)合的面積為,求出點的橫坐標(biāo),利用三點共線,求出點的縱坐標(biāo),將點坐標(biāo)代入橢圓方程,即可求解.

2)設(shè),得出直線方程,聯(lián)立求出交點坐標(biāo),要證明交點在定直線上,尋求關(guān)系,設(shè)出直線方程,與橢圓方程聯(lián)立,消元得到的方程,得到關(guān)系,代入交點坐標(biāo),化簡即可證明結(jié)論.

1)設(shè)坐標(biāo)原點為,.

由題意得,,

,且直線上的點,所以.

三點共線,所以,即,故.

又直線上的點,所以,

即橢圓,將代入橢圓,解得,

所以橢圓的方程為.

2)依題意,直線斜率必存在,設(shè)其方程為,

設(shè),,則,,,

聯(lián)立,

所以,解得,

,所以,

不妨設(shè),

所以直線方程為,直線方程為,

聯(lián)立整理,

解得

所以,四邊形的兩條對角線的交點在定直線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為實現(xiàn)國民經(jīng)濟新三步走的發(fā)展戰(zhàn)略目標(biāo),國家加大了扶貧攻堅的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開始,全面實施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實施的扶貧項目,各項目參加戶數(shù)占比(參加該項目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項目的脫貧率見下表:

實施項目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形為平行四邊形,三角形為等邊三角形,已知,,,.

1)求證:

2)求直線與面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,二面角α1β的平面角的大小為60°A,B1上的兩個定點,且AB2Cα,Dβ,滿足AB與平面BCD所成的角為30°,且點A在平面BCD上的射影H在△BCD的內(nèi)部(包括邊界),則點H的軌跡的長度等于(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】原始的蚊香出現(xiàn)在宋代.根據(jù)宋代冒蘇軾之名編寫的《格物粗談》記載:端午時,貯浮萍,陰干,加雄黃,作紙纏香,燒之,能祛蚊蟲.”如圖,為某校數(shù)學(xué)興趣小組用數(shù)學(xué)軟件制作的螺旋蚊香,畫法如下:在水平直線上取長度為1的線段,做一個等邊三角形,然后以點為圓心,為半徑逆時針畫圓弧,交線段的延長線于點,再以點為圓心,為半徑逆時針畫圓弧,交線段的延長線于點,以此類推,當(dāng)?shù)玫降?/span>螺旋蚊香與直線恰有個交點時,螺旋蚊香的總長度的最小值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機抽取名學(xué)生的筆試成績,按成績共分五組,得到如下的頻率分布表:

組號

分組

頻數(shù)

頻率

第一組

第二組

第三組

第四組

第五組

1)請寫出頻率分布表中、的值,若同組中的每個數(shù)據(jù)用該組區(qū)間的中間值代替,請估計全體考生的平均成績;

2)為了能選出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第、組中用分層抽樣的方法抽取名考生進(jìn)入第二輪面試,求第、、組中每組各抽取多少名考生進(jìn)入第二輪的面試;

3)在(2)的前提下,學(xué)校要求每個學(xué)生需從、兩個問題中任選一題作為面試題目,求第三組和第五組中恰好有個學(xué)生選到問題的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,P為直線上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C

1)求曲線C的方程:

2)過點的直線與曲線C交于A,B兩點,點D(異于A,B)在C上,直線,分別與x軸交于點MN,且,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國的西氣東輸工程把西部的資源優(yōu)勢變?yōu)榻?jīng)濟優(yōu)勢,實現(xiàn)了氣能源需求與供給的東西部銜接,工程建設(shè)也加快了西部及沿線地區(qū)的經(jīng)濟發(fā)展輸氣管道工程建設(shè)中,某段管道鋪設(shè)要經(jīng)過一處峽谷,峽谷內(nèi)恰好有一處直角拐角,水平橫向移動輸氣管經(jīng)過此拐角,從寬為米峽谷拐入寬為米的峽谷.如圖所示,位于峽谷懸崖壁上兩點、的連線恰好經(jīng)過拐角內(nèi)側(cè)頂點(點、、在同一水平面內(nèi)),設(shè)與較寬側(cè)峽谷懸崖壁所成角為,則的長為________(用表示)米.要使輸氣管順利通過拐角,其長度不能低于________米.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Snn2+pn,且a4,a7,a12成等比數(shù)列.

1)求數(shù)列{an}的通項公式;

2)若bn,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案