【題目】在四棱錐中,四邊形為平行四邊形,三角形為等邊三角形,已知,,,.
(1)求證:
(2)求直線與面所成的角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點, 根據(jù)線面垂直判定定理得平面,即得,再根據(jù)勾股定理逆定理得結(jié)果;
(2)先建立空間直角坐標(biāo)系,求平面一個法向量,再利用向量數(shù)量積求向量夾角,最后根據(jù)線面角與向量夾角關(guān)系得結(jié)果.
(1)設(shè)的中點為,連接與,
因為是等邊三角形,所以,又因為,所以平面,則,, ,所以是等腰直角三角形,且
(2)由(1)可知平面,即平面平面,又因為,,
所以
以為原點,過在所在平面內(nèi)作的垂線為軸,所在直線為軸建立空間直角坐標(biāo)系
則點
,
設(shè)平面的法向量, 令,則則,所以
因此直線與面所成的角的正弦值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+2ax﹣lnx﹣1,a∈R.
(1)當(dāng)a時,求f(x)的單調(diào)區(qū)間及極值;
(2)若a為整數(shù),且不等式f(x)≥x對任意x∈(0,+∞)恒成立,求a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù)有下述四個結(jié)論:
①是偶函數(shù);②的最大值為;
③在有個零點;④在區(qū)間單調(diào)遞增.
其中所有正確結(jié)論的編號是( )
A.①②B.①③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查,為此需要抽驗960人的血樣進行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個人的血分別化驗,這時需要驗960次.
方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次;否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.
假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨立.
(1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè),試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位在2019年重陽節(jié)組織50名退休職工(男、女各25名)旅游,退休職工可以選擇到甲、乙兩個景點其中一個去旅游.他們最終選擇的景點的結(jié)果如下表:
男性 | 女性 | |
甲景點 | 20 | 10 |
乙景點 | 5 | 15 |
(1)據(jù)此資料分析,是否有的把握認(rèn)為選擇哪個景點與性別有關(guān)?
(2)按照游覽不同景點用分層抽樣的方法,在女職工中選取5人,再從這5人中隨機抽取2人進行采訪,求這2人游覽的景點不同的概率.
附:,.
P() | 0.010 | 0.005 | 0.001 |
k | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓上一點關(guān)于原點的對稱點為,點, 的面積為,直線過上的點.
(1)求的方程;
(2)設(shè)為的短軸端點,直線過點交于,證明:四邊形的兩條對角線的交點在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x)在(﹣∞,0]上單調(diào)遞增,且f(﹣1)=﹣1.若f(x﹣1)+1≥0,則x的取值范圍是_____;設(shè)函數(shù)若方程f(g(x))+1=0有且只有兩個不同的實數(shù)解,則實數(shù)a的取值范圍為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com