【題目】如圖,已知矩形,過平面,再過于點(diǎn),過于點(diǎn)

Ⅰ)求證:

Ⅱ)若平面于點(diǎn),求證:

【答案】1)見解析(2)見解析

【解析】試題分析:(1本題需經(jīng)過多次線面垂直與線線垂直的轉(zhuǎn)化:由平面,得,再得平面,即得可得平面,即得因此平面,即得結(jié)論2本題仍需經(jīng)過多次線面垂直與線線垂直的轉(zhuǎn)化:由平面,得,再得平面即得,可得平面即得結(jié)論

試題解析:∵在矩形中,

平面,

,

點(diǎn),

、平面,

平面

,

又∵,

點(diǎn),

、平面,

平面,

,

又∵,

點(diǎn),

、平面

平面,

∵在矩形中,

,

平面,

,

點(diǎn),

、平面

平面,

又∵平面,

,

點(diǎn),

、平面,

平面,

點(diǎn)睛:垂直、平行關(guān)系證明中應(yīng)用轉(zhuǎn)化與化歸思想的常見類型.

(1)證明線面、面面平行,需轉(zhuǎn)化為證明線線平行.

(2)證明線面垂直,需轉(zhuǎn)化為證明線線垂直.

(3)證明線線垂直,需轉(zhuǎn)化為證明線面垂直.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABCA1B1C1中,AB=BC=BB1, ,DAC上的點(diǎn),B1C∥平面A1BD

(1)求證:BD⊥平面

(2)若,求三棱錐A-BCB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】盒中有6只燈泡,其中有2只是次品,4只是正品.從中任取2只,試求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中點(diǎn),則圖中直角三角形的個(gè)數(shù)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱錐的三個(gè)側(cè)面均為邊長是的等邊三角形, , 分別為 的中點(diǎn).

(I)求的長.

(II)求證:

(III)求三棱錐的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCO的頂點(diǎn)C、A分別在x軸、y軸上,BC是菱形BDCE的對角線,若∠D=60°,BC=2,則點(diǎn)D的坐標(biāo)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)E在⊙O上,C為 的中點(diǎn),過點(diǎn)C作直線CD⊥AE于D,連接AC、BC.

(1)試判斷直線CD與⊙O的位置關(guān)系,并說明理由;
(2)若AD=2,AC= ,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱柱,側(cè)棱與底面垂直,,,分別是,的中點(diǎn).

)求證:平面

)求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(2m+1)x+m2﹣1=0有兩個(gè)不相等的實(shí)數(shù)根.
(1)求m的取值范圍;
(2)寫出一個(gè)滿足條件的m的值,并求此時(shí)方程的根.

查看答案和解析>>

同步練習(xí)冊答案