解:(1)3cos(B-C)-1=6cosBcosC,
化簡得:3(cosBcosC+sinBsinC)-1=6cosBcosC,
變形得:3(cosBcosC-sinBsinC)=-1,
即cos(B+C)=-
,
則cosA=-cos(B+C)=
;
(2)∵A為三角形的內(nèi)角,cosA=
,
∴sinA=
=
,
又S
△ABC=2
,即
bcsinA=2
,解得:bc=6①,
又a=3,cosA=
,
∴由余弦定理a
2=b
2+c
2-2bccosA得:b
2+c
2=13②,
聯(lián)立①②解得:
或
.
分析:(1)利用兩角和與差的余弦函數(shù)公式化簡已知等式左邊的第一項,移項合并后再利用兩角和與差的余弦函數(shù)公式得出cos(B+C)的值,將cosA用三角形的內(nèi)角和定理及誘導(dǎo)公式變形后,將cos(B+C)的值代入即可求出cosA的值;
(2)由cosA的值及A為三角形的內(nèi)角,利用同角三角函數(shù)間的基本關(guān)系求出sinA的值,利用三角形的面積公式表示出三角形ABC的面積,將已知的面積及sinA的值代入,得出bc=6,記作①,再由a及cosA的值,利用余弦定理列出關(guān)于b與c的關(guān)系式,記作②,聯(lián)立①②即可求出b與c的值.
點評:此題考查了余弦定理,三角形的面積公式,兩角和與差的余弦函數(shù)公式,誘導(dǎo)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式及定理是解本題的關(guān)鍵.