15.下列判斷正確的是( 。
A.若x、y是實數(shù),則x2≠y2?x≠y或x≠-y
B.命題:“a,b都偶數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是偶數(shù)”
C.若“p或q”為假命題,則“非p且非q”是真命題
D.已知a,b,c是實數(shù),關(guān)于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0

分析 若x2≠y2,即|x|≠|(zhì)y|,則可得x、y的關(guān)系,即可得A錯誤;直接寫出命題的逆否命題判斷B的真假;根據(jù)復(fù)合命題真假判斷的真值表,可以判斷出C的真假;根據(jù)不等式恒成立問題及二次函數(shù)的圖象和性質(zhì),可以判斷命題D的真假,進而得到答案.

解答 解:對于A,若x2≠y2,即|x|≠|(zhì)y|,則可得x≠y且x≠-y,故A錯誤;
對于B,命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a、b不都是偶數(shù)”,故B錯誤;
對于C,若“p或q”為假命題,則p,q均為假命題,則“非p且非q”是真命題,故C正確;
對于D,若關(guān)于x的不等式ax2+bx+c≤0的解集是空集,則必有a=b=0,c>0或a>0且△<0,故④錯誤.
故選:C.

點評 本題考查命題的真假判斷與應(yīng)用,其中判斷出每個命題的真假是解答本題的關(guān)鍵,④中易忽略a=b=0,c>0的情況,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在數(shù)列{an}中,a1=1,an+1=2an+3.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=an+3,求數(shù)列{nbn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知$\vec a$=(m,1),$\vec b$=(2,-2),若$\vec a$⊥$\vec b$,則m的值是(  )
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為$\frac{3}{5}$和$\frac{2}{3}$,現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設(shè)甲、乙兩組的研發(fā)相互獨立.
(1)求只有一種新產(chǎn)品研發(fā)成功的概率;
(2)若新產(chǎn)品A研發(fā)成功,預(yù)計企業(yè)可獲利潤50萬元,若新產(chǎn)品B研發(fā)成功,預(yù)計企業(yè)可獲利潤60萬元,求該企業(yè)可獲利潤的均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知實數(shù)x,y滿足$\left\{\begin{array}{l}{x+y≥3}\\{y≤x+1}\\{y≤-3x+9}\end{array}\right.$,試求解下列問題:
(1)求目標(biāo)函數(shù)z=3x+y的最大值,此時對應(yīng)的最優(yōu)解有多少個?
(2)若目標(biāo)函數(shù)z=ax+y取得最大值時對應(yīng)的最優(yōu)解有無數(shù)個,求實數(shù)a的值.
(3)若目標(biāo)函數(shù)z=ax+y僅在B(2,3)處取得最大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.經(jīng)過1小時,時針旋轉(zhuǎn)的角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知射手甲射擊一次,擊中目標(biāo)的概率是$\frac{2}{3}$.
(Ⅰ)若甲射擊5次,其擊中目標(biāo)的次數(shù)記為X,求X的期望和方差;
(Ⅱ)假設(shè)甲連續(xù)2次未擊中目標(biāo),或者射擊次數(shù)達(dá)到五次,則中止其射擊.甲停止射擊時已經(jīng)射擊的次數(shù)記為Y,求Y的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點F1是拋物線C:x2=2py(p>0)的焦點,點F2為拋物線C的對稱軸與其準(zhǔn)線的交點,過F2作拋物線C的切線,切點為A,若點A恰好在以F1,F(xiàn)2為焦點的雙曲線上,則雙曲線的離心率為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知a>0,函數(shù)f(x)=-2asin(2x+$\frac{π}{6}$)+2a+b,當(dāng)x∈[0,$\frac{π}{2}$]時,-5≤f(x)≤1.
(1)求常數(shù)a,b的值;
(2)求f(x)的單調(diào)區(qū)間;
(3)指出所求函數(shù)圖象是由f(x)=sinx的圖象如何變換得到的.

查看答案和解析>>

同步練習(xí)冊答案