【題目】已知函數(shù)

(Ⅰ)若,求函數(shù)的定義域和值域;

(Ⅱ)若函數(shù)的定義域為,值域為,求實數(shù)的值.

【答案】(Ⅰ)定義域為,值域為;(Ⅱ).

【解析】

(Ⅰ)由,得到,由,求解,即可得出定義域;令,得到,根據(jù)判別式法,即可求出結果;

(Ⅱ)由定義域為可得:恒成立,即,令,由于的值域為,則,又,根據(jù)判別式大于等于0,解集為,得到是方程的兩個根,由根與系數(shù)關系,列出方程組,求解,即可得出結果.

(Ⅰ)若,則,由,得到

,得到,故定義域為

,則

時,符合.

時,上述方程要有解,則,得到,

,所以,

所以,則值域為

(Ⅱ)由于函數(shù)的定義域為,則恒成立,則,即,令,由于的值域為,則,而

,則由解得 ,故是方程的兩個根,則,得到,符合題意.所以

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,,,,底面,,點在棱上,且

(1)證明:面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】1)數(shù)列{an}的前n項和為Sn10nn2,求數(shù)列{|an|}的前n項和.

2)已知等差數(shù)列{an}滿足a20,a6+a8=﹣10.求數(shù)列{}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為創(chuàng)建國家級文明城市,某城市號召出租車司機在高考期間至少參加一次“愛心送考”,該城市某出租車公司共200名司機,他們參加“愛心送考”的次數(shù)統(tǒng)計如圖所示.

(1)求該出租車公司的司機參加“愛心送考”的人均次數(shù);

(2)從這200名司機中任選兩人,設這兩人參加送考次數(shù)之差的絕對值為隨機變量,求的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是2018年第一季度五省GDP情況圖,則下列描述中不正確的是( )

A. 與去年同期相比2018年第一季度五個省的GDP總量均實現(xiàn)了增長

B. 2018年第一季度GDP增速由高到低排位第5的是浙江省

C. 2018年第一季度GDP總量和增速由高到低排位均居同一位的省只有1

D. 去年同期河南省的GDP總量不超過4000億元

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場銷售價與上市時間的關系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價與時間的函數(shù)關系式寫出圖(2)表示的種植成本與時間的函數(shù)關系式

(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】a>0,且a≠1,函數(shù)ya2x2ax1[1,1]上的最大值是14,則實數(shù)a的值為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是函數(shù)的零點,.

(1)求實數(shù)的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若方程有三個不同的實數(shù)解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù), 為自然對數(shù)的底數(shù)),曲線在與軸的交點處的切線斜率為-1.

(1)求的值及函數(shù)的單調區(qū)間;

(2)證明:當時, ;

(3)證明:當時, .

查看答案和解析>>

同步練習冊答案