【題目】已知函數(shù),其中為常數(shù)且.

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)討論函數(shù)的單調(diào)性;

(3)當(dāng)時, , ,若存在,使成立,求實(shí)數(shù)的取值范圍.

【答案】 (1) ;(2)當(dāng), 上單調(diào)遞減,上單調(diào)弟增;當(dāng), 、上單調(diào)遞增,在上單調(diào)遞減.(3).

【解析】試題分析:(1)當(dāng)時,求函數(shù)的導(dǎo)數(shù),以及,利用公式求解;(2)求函數(shù)的導(dǎo)數(shù)并化解為,分,兩種情況討論函數(shù)的單調(diào)性,(3)當(dāng)時,根據(jù)條件可將問題轉(zhuǎn)化為,即根據(jù)(2)的最小值和求函數(shù)的最大值,求實(shí)數(shù)的取值范圍.

試題解析:(1)當(dāng)時, ,

=

切線的斜率,又,

故切線的方程為,即

(2),

()當(dāng), ,

當(dāng), ;當(dāng), .

上單調(diào)遞減,上單調(diào)遞增

()當(dāng), 有兩個實(shí)數(shù)根,

,,

, .

上均為單調(diào)增函數(shù),上為減函數(shù).

綜上所述,當(dāng), 上單調(diào)遞減,上單調(diào)弟增;當(dāng),

上單調(diào)遞增,在上單調(diào)遞減.

(3)當(dāng)時,由(2)知,

, 上為增函數(shù). .依題意有.

的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知分別為橢圓的左、右焦點(diǎn),且橢圓經(jīng)過點(diǎn)和點(diǎn),其中為橢圓的離心率.

(1)求橢圓的方程;

(2)過點(diǎn)的直線橢圓于另一點(diǎn),點(diǎn)在直線上,且.若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年9月16日下午5時左右,今年第22號臺風(fēng)“山竹”在廣東江門川島鎮(zhèn)附近正面登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,某記者調(diào)查了當(dāng)?shù)啬承^(qū)的100戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成,,,,五組,并作出如下頻率分布直方圖.

(Ⅰ)根據(jù)頻率分布直方圖估計(jì)該小區(qū)居民由于臺風(fēng)造成的經(jīng)濟(jì)損失的眾數(shù)和平均值.

(Ⅱ)“一方有難,八方支援”,臺風(fēng)后居委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,記者調(diào)查的100戶居民捐款情況如下表格,在表格空白處填寫正確數(shù)字,并說明是否有99%以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(Ⅲ)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟(jì)損失超過元的人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列及期望.

參考公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;

(2)若函數(shù)上存在兩個極值點(diǎn),,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是圓柱的一部分,它是由矩形及其內(nèi)部邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)得到的,點(diǎn)是弧上的一點(diǎn),點(diǎn)是弧的中點(diǎn).

1)求證:平面平面;

(2)當(dāng)時,求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且

(1)判斷函數(shù)的奇偶性;

(2) 判斷函數(shù)(1,+)上的單調(diào)性,并用定義證明你的結(jié)論;

(3),求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn).

(Ⅰ)若直線過焦點(diǎn),且與圓交于(其中軸同側(cè)),求證: 是定值;

(Ⅱ)設(shè)拋物線點(diǎn)的切線交于點(diǎn),試問: 軸上是否存在點(diǎn),使得為菱形?若存在,請說明理由并求此時直線的斜率和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】高三一班、二班各有6名學(xué)生去參加學(xué)校組織的高中數(shù)學(xué)競賽選拔考試,成績?nèi)缜o葉圖所示.

(1)若一班、二班6名學(xué)生的平均分相同,求值;

(2)若將競賽成績在、內(nèi)的學(xué)生在學(xué)校推優(yōu)時,分別賦分、2分、3分,現(xiàn)在從一班的6名參賽學(xué)生中選兩名,求推優(yōu)時,這兩名學(xué)生賦分的和為4分的概率.

查看答案和解析>>

同步練習(xí)冊答案