3.若直線l1:ax+2y-9=0與直線l2:x+(a+1)y+4=0平行,則a的值為(  )
A.1或2B.1或-2C.1D.-2

分析 利用直線與直線平行的條件求解.

解答 解:∵直線l1:ax+2y-9=0與直線l2:x+(a+1)y+4=0平行,
∴$\frac{a}{1}=\frac{2}{a+1}≠\frac{-9}{4}$,
解得a=-2或a=1.
故選:B.

點評 本題考查實數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意直線與直線平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)單調(diào)遞增的函數(shù)是(  )
A.y=|x|+1B.y=x3C.y=-x2+1D.y=2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+4ax+2a+6.
(1)若函數(shù)f(x)=log2  f(x)的最小值為2,求a的值;
(2)若對任意x∈R,都有f(x)≥0成立,求函數(shù)g(a)=2-a|a+3|的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若直線x=1的傾斜角為α,則α=( 。
A.不存在B.90°C.45°D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知平面內(nèi)三點A(3,0)、B(2,2)、C(5,-4),則向量$\overrightarrow{AB}$與$\overrightarrow{BC}$的夾角為π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.設(shè)全集U={-1,0,1,2,3},A={-1,0,1},B={-1,2,3},則∁UA∩B=( 。
A.{-1}B.{2,3}C.{0,1}D.B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知定義在實數(shù)集R上的偶函數(shù)f(x)在區(qū)間[0,+∞)上是單調(diào)增函數(shù),若f(1-x)<f(2x),則x的取值范圍是x>$\frac{1}{3}$或x<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知a∈R,函數(shù)f(x)=log2($\frac{1}{x}$+a).
(1)當(dāng)a=1時,解不等式f(x)<0;
(2)若a>0,不等式f(x)<log2(x+$\frac{a+1}{x}$)恒成立,求a的取值范圍;
(3)若關(guān)于x的方程f(x)-log2[(a-4)x+2a-5]=0的解集中恰好有一個元素,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知實數(shù)x,y使得x2+4y2-2x+8y+1=0,則x+2y的最小值等于-2$\sqrt{2}$-1.

查看答案和解析>>

同步練習(xí)冊答案