設(shè)函數(shù)處的切線與直線平行.

(1)求的值;

(2)求函數(shù)在區(qū)間[0,1]的最小值;

(3)若,根據(jù)上述(I)、(II)的結(jié)論,證明:

 

 

【答案】

【解析】略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3+3ax-1,a∈R.
(Ⅰ)若函數(shù)y=f(x)的圖象在x=1處的切線與直線y=6x+6平行,求實(shí)數(shù)a的值;
(Ⅱ)設(shè)函數(shù)g(x)=f′(x)-6,對(duì)滿足-1≤a≤1的一切a的值,都有g(shù)(x)<0成立,求實(shí)數(shù)x的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•煙臺(tái)一模)定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時(shí)滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù); 
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=-x3-2mx2-m2x+1-m(m>-2)的圖象在x=2處的切線與直線x-5y-12=0垂直.
(Ⅰ)求函數(shù)f(x)的極值與零點(diǎn);
(Ⅱ)設(shè)g(x)=
1-x
kx
+lnx,若對(duì)任意x1∈[0,1],存在x2∈(0,1],使f(x1)>g(x2)成立,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若a≥0,b≥0,c≥0,且a+b+c=1,證明:
a
1+a2
+
b
1+b2
+
c
1+c2
9
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年石室中學(xué))        設(shè)函數(shù)處的切線與直線平行。

   (I)求m的值;

   (II)求函數(shù)在區(qū)間[0,1]的最小值;

   (III)若,根據(jù)上述(I)、(II)的結(jié)論,

         證明:

 

查看答案和解析>>

同步練習(xí)冊(cè)答案