已知向量
OA
=(cosα,sinα),
OB
=(-sin(α+
π
6
),cos(α+
π
6
)),其中O為滿足|λ
OA
-
OB
|
3
|
OB
|
,求實(shí)數(shù)λ的取值范圍.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:首先,根據(jù)平面向量的數(shù)量積的運(yùn)算性質(zhì),得到|λ
OA
-
OB
|22|
OA
|2-2λ
OA
OB
+|
OB
|22+2λsin[(α+
π
6
)-α]+1=λ2+λ+1≥3,然后,求解即可.
解答: 解:∵向量
OA
=(cosα,sinα),
OB
=(-sin(α+
π
6
),cos(α+
π
6
)),
∴λ
OA
-
OB
=(λcosα+sin(α+
π
6
)
,λsinα-cos(α+
π
6
)
),
∴|λ
OA
-
OB
|22|
OA
|2-2λ
OA
OB
+|
OB
|2
2+2λsin[(α+
π
6
)-α]+1
2+λ+1≥3,
∴λ2+λ-2≥0,
∴λ≤-2或λ≥1.
∴實(shí)數(shù)λ的取值范圍(-∞,-2]∪[,+∞).
點(diǎn)評(píng):本題重點(diǎn)考查了向量的坐標(biāo)運(yùn)算、向量的數(shù)量積的運(yùn)算性質(zhì)等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosx-
3
sin2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)求函數(shù)f(x)在x∈[0,
π
2
]的值域;
(Ⅲ)能否把函數(shù)f(x)的圖象進(jìn)行適當(dāng)?shù)钠揭频玫揭粋(gè)奇函數(shù)的圖象?如果能,寫出一個(gè)平移的方法;如果不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,下列命題:
①(
AA1
+
AD
+
AB
2=3
AB
2
;
A1C
•(
A1B1
-
A1A
)
=0;
AD1
A1B
的夾角為60°;
④正方體的體積為|
AB
AA1
AD
|.
其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)點(diǎn)A在圓x2+y2-7x+4y+16=0上,點(diǎn)B(6,-4),求線段AB的中點(diǎn)O的軌跡.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在△ABC中,內(nèi)角∠A、∠B、∠C所對(duì)的邊分別為a、b、c,且a2+b2-c2+ab=0.
(1)求∠C的大。
(2)求sinA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的遞推公式an=
n,n為奇數(shù)
a
n
2
,n為偶數(shù)(n∈N*)
,則a2012+a2013=( 。
A、2516B、2518
C、3019D、3021

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知an=
n
0
(2x-1)dx,則
2an+83
2n+1
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b∈R,試判斷命題“若a>|b|,則
1
a
1
b
”是否為真命題.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的斜率為-
3
4
,且經(jīng)過點(diǎn)(3,-3).
(1)求直線l的方程,并把它化成一般式;
(2)若直線l′:6x+2m2y+3m=0與直線l平行,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案