已知雙曲線與拋物線有一個公共的焦點,且雙曲線上的點到坐標(biāo)原點的最短距離為1,則該雙曲線的標(biāo)準(zhǔn)方程是___________。
解析試題分析:利用拋物線的焦點坐標(biāo)確定,雙曲線中c的值,利用雙曲線上的點到坐標(biāo)原點的最短距離為1,確定a的值,從而可求雙曲線的標(biāo)準(zhǔn)方程。解:拋物線y2=8x得出其焦點坐標(biāo)(2,0),故雙曲線的c=2,
∵雙曲線上的點到坐標(biāo)原點的最短距離為1,∴a=1,∴b2=c2-a2=3,∴雙曲線的標(biāo)準(zhǔn)方程是故答案為:
考點:拋物線的標(biāo)準(zhǔn)方程
點評:本題考查拋物線的標(biāo)準(zhǔn)方程與性質(zhì),考查雙曲線的標(biāo)準(zhǔn)方程,確定幾何量是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知是橢圓和雙曲線的公共頂
點。是雙曲線上的動點,是橢圓上的動點(、都異于、),且滿足,其中,設(shè)直線、、、的斜率 分別記為, ,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知橢圓C1的中心在原點、焦點在x軸上,拋物線C2的頂點在原點、焦點在x軸上。小明從曲線C1,C2上各取若干個點(每條曲線上至少取兩個點),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個點既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:
X | -2 | - | 0 | 2 | 2 | 3 |
Y | 2 | 0 | -2 | -2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com