已知雙曲線與拋物線有一個(gè)公共的焦點(diǎn),且雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,則該雙曲線的標(biāo)準(zhǔn)方程是___________。
解析試題分析:利用拋物線的焦點(diǎn)坐標(biāo)確定,雙曲線中c的值,利用雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,確定a的值,從而可求雙曲線的標(biāo)準(zhǔn)方程。解:拋物線y2=8x得出其焦點(diǎn)坐標(biāo)(2,0),故雙曲線的c=2,
∵雙曲線上的點(diǎn)到坐標(biāo)原點(diǎn)的最短距離為1,∴a=1,∴b2=c2-a2=3,∴雙曲線的標(biāo)準(zhǔn)方程是故答案為:
考點(diǎn):拋物線的標(biāo)準(zhǔn)方程
點(diǎn)評(píng):本題考查拋物線的標(biāo)準(zhǔn)方程與性質(zhì),考查雙曲線的標(biāo)準(zhǔn)方程,確定幾何量是關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)、為雙曲線的兩個(gè)焦點(diǎn),點(diǎn)在此雙曲線上,,如果此雙曲線的離心率等于,那么點(diǎn)到軸的距離等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知是橢圓和雙曲線的公共頂
點(diǎn)。是雙曲線上的動(dòng)點(diǎn),是橢圓上的動(dòng)點(diǎn)(、都異于、),且滿足,其中,設(shè)直線、、、的斜率 分別記為, ,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)中心在原點(diǎn)的雙曲線與橢圓+y2=1有公共的焦點(diǎn),且它們的離心率互為倒數(shù),則該雙曲線的方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知橢圓C1的中心在原點(diǎn)、焦點(diǎn)在x軸上,拋物線C2的頂點(diǎn)在原點(diǎn)、焦點(diǎn)在x軸上。小明從曲線C1,C2上各取若干個(gè)點(diǎn)(每條曲線上至少取兩個(gè)點(diǎn)),并記錄其坐標(biāo)(x,y)。由于記錄失誤,使得其中恰好有一個(gè)點(diǎn)既不在橢圓上C1上,也不在拋物線C2上。小明的記錄如下:
X | -2 | - | 0 | 2 | 2 | 3 |
Y | 2 | 0 | -2 | -2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com