【題目】比較甲、乙兩名學生的數(shù)學學科素養(yǎng)的各項能力指標值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數(shù)學抽象指標值為4,乙的數(shù)學抽象指標值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學建模能力指標值優(yōu)于乙的直觀想象能力指標值
C. 乙的六維能力指標值整體水平優(yōu)于甲的六維能力指標值整體水平
D. 甲的數(shù)學運算能力指標值優(yōu)于甲的直觀想象能力指標值
【答案】C
【解析】
利用雷達圖對每一個選項的命題逐一分析推理得解.
對于選項A, 甲的邏輯推理能力指標值為4,優(yōu)于乙的邏輯推理能力指標值為3,所以該命題是假命題;
對于選項B, 甲的數(shù)學建模能力指標值為4,乙的直觀想象能力指標值為5,所以乙的直觀想象能力指標值優(yōu)于甲的數(shù)學建模能力指標值,所以該命題是假命題;
對于選項C,甲的六維能力指標值的平均值為,乙的六維能力指標值的平均值為,因為,所以選項C正確;
對于選項D, 甲的數(shù)學運算能力指標值為4,甲的直觀想象能力指標值為5,所以甲的數(shù)學運算能力指標值不優(yōu)于甲的直觀想象能力指標值,故該命題是假命題.
故選:C
科目:高中數(shù)學 來源: 題型:
【題目】實驗中學從高二級部中選拔一個班級代表學校參加“學習強國知識大賽”,經(jīng)過層層選拔,甲、乙兩個班級進入最后決賽,規(guī)定回答1個相關問題做最后的評判選擇由哪個班級代表學校參加大賽.每個班級6名選手,現(xiàn)從每個班級6名選手中隨機抽取3人回答這個問題已知這6人中,甲班級有4人可以正確回答這道題目,而乙班級6人中能正確回答這道題目的概率每人均為,甲、乙兩班級每個人對問題的回答都是相互獨立,互不影響的.
(1)求甲、乙兩個班級抽取的6人都能正確回答的概率;
(2)分別求甲、乙兩個班級能正確回答題目人數(shù)的期望和方差、,并由此分析由哪個班級代表學校參加大賽更好?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖在四棱錐中,側(cè)棱平面,底面是直角梯形,,,,,為側(cè)棱中點.
(1)設為棱上的動點,試確定點的位置,使得平面平面,并寫出證明過程;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分,(1)小問7分,(2)小問5分)
設函數(shù)
(1)若在處取得極值,確定的值,并求此時曲線在點處的切線方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了使房價回歸到收入可支撐的水平,讓全體人民住有所居,近年來全國各一、二線城市打擊投機購房,陸續(xù)出臺了住房限購令.某市一小區(qū)為了進一步了解已購房民眾對市政府岀臺樓市限購令的認同情況,隨機抽取了本小區(qū)50戶住戶進行調(diào)查,各戶人平均月收入(單位:千元)的戶數(shù)頻率分布直方圖如圖,其中贊成限購的戶數(shù)如下表:
人平均月收入 | ||||||
贊成戶數(shù) | 4 | 9 | 12 | 6 | 3 | 1 |
(1)若從人平均月收入在的住戶中再隨機抽取兩戶,求所抽取的兩戶至少有一戶贊成樓市限購令的概率;
(2)若將小區(qū)人平均月收入不低于7千元的住戶稱為“高收入戶”,人平均月收入低于7千元的住戶稱為“非高收入戶”根據(jù)已知條件完成如圖所給的列聯(lián)表,并說明能否有的把握認為“收入的高低”與“贊成樓市限購令”有關.
非高收入戶 | 高收入戶 | 總計 | |
贊成 | |||
不贊成 | |||
總計 |
附:臨界值表
0.1 | 0.05 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.63.5 | 10.828 |
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】比較甲、乙兩名學生的數(shù)學學科素養(yǎng)的各項能力指標值(滿分為5分,分值高者為優(yōu)),繪制了如圖1所示的六維能力雷達圖,例如圖中甲的數(shù)學抽象指標值為4,乙的數(shù)學抽象指標值為5,則下面敘述正確的是( )
A. 乙的邏輯推理能力優(yōu)于甲的邏輯推理能力
B. 甲的數(shù)學建模能力指標值優(yōu)于乙的直觀想象能力指標值
C. 乙的六維能力指標值整體水平優(yōu)于甲的六維能力指標值整體水平
D. 甲的數(shù)學運算能力指標值優(yōu)于甲的直觀想象能力指標值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù),其中,是的一個極值點,且.
(1)討論的單調(diào)性
(2)求實數(shù)和a的值
(3)證明
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.
(1)求點的軌跡方程;
(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com