16.△OAB的直觀圖△O′A′B′如圖所示,且O′A′=O′B′=2,則△OAB的面積為( 。
A.1B.2C.4D.8

分析 由斜二測畫法還原出原圖,求面積.

解答 解:由斜二測畫法可知原圖應(yīng)為:
其面積為:S=$\frac{1}{2}×2×4$=4,
故選:C.

點(diǎn)評(píng) 本題考查直觀圖與平面圖形的畫法,注意兩點(diǎn):一是角度的變化;二是長度的變化;考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.若點(diǎn)P(x0,2)為拋物線E:y2=4x上一點(diǎn),則點(diǎn)P到拋物線E的焦點(diǎn)的距離為( 。
A.2B.$\sqrt{5}$C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,x∈[-1,0]}\\{{x}^{2}+1,x∈(0,1]}\end{array}\right.$,則函數(shù)f(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知正項(xiàng)等差數(shù)列{an}滿足:${a_{n+1}}+{a_{n-1}}=a_n^2\;(n≥2)$,等比數(shù)列{bn}滿足:${b_{n+1}}{b_{n-1}}=2b_n^{\;}\;(n≥2)$,則log2(a2+b2)=( 。
A.-1或2B.0或2C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列各組函數(shù)表示相同函數(shù)的是( 。
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=($\sqrt{x}$)2B.f(x)=1,g(x)=x0
C.f(x)=$\left\{\begin{array}{l}{x,x≥0}\\{-x,x<0}\end{array}\right.$,g(x)=$\sqrt{{x}^{2}}$D.f(x)=x+1,g(x)=$\frac{{x}^{2}-1}{x-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個(gè)正三棱錐(底面為正三角形,頂點(diǎn)在底面上的射影為底面的中心)的四個(gè)頂點(diǎn)都在半徑為1的球面上,其中底面的三個(gè)頂點(diǎn)在過該球球心的一個(gè)截面上,則該正三棱錐的體積是(  )
A.$\frac{{\sqrt{3}}}{12}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{3\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)的定義域是x≠0的一切實(shí)數(shù),對(duì)于定義域內(nèi)的任意x1,x2,都有f(x1x2)=f(x1)+f(x2),且當(dāng)x>1時(shí),f(x)>0,且f(2)=1.
(1)求f(4);
(2)證明:f(x)在(0,+∞)上是增函數(shù);
(3)解不等式 f(2x2-1)<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若直線3x+4y=2,則x2+y2的最小值為$\frac{4}{25}$,最小值點(diǎn)為($\frac{6}{25}$,$\frac{8}{25}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的導(dǎo)數(shù)
(1)y=2x3-3x2-4;
(2)y=xlnx;
(3)$y=\frac{cosx}{x}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案