將a2+b2+2ab=(a+b)2改寫成全稱命題是____________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆高考蘇教數(shù)學(xué)(理)訓(xùn)練15 導(dǎo)數(shù)與函數(shù)極值、最值(解析版) 題型:填空題
設(shè)函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個(gè)極值點(diǎn),則下列圖像不可能為y=f(x)圖像的是________.(填寫序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考蘇教數(shù)學(xué)(理)訓(xùn)練10 對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:填空題
若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),且f(2)=1,則f(x)=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考蘇教數(shù)學(xué)訓(xùn)練3 簡單的邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞(解析版) 題型:解答題
命題p:?x∈(1,+∞),函數(shù)f(x)=|log2x|的值域?yàn)閇0,+∞);命題q:?m≥0,使得y=sin mx的周期小于,試判斷p∨q,p∧q,p的真假性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考蘇教數(shù)學(xué)訓(xùn)練3 簡單的邏輯聯(lián)結(jié)詞、全稱量詞與存在量詞(解析版) 題型:填空題
【已知命題p1:存在x0∈R,使得x02+x0+1<0成立;p2:對(duì)任意x∈[1,2],x2-1≥0.以下命題:
①(p1)∧(p2);②p1∨(p2);③(p1)∧p2;④p1∧p2.
其中為真命題的是________(填序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破四 高考立體幾何(解析版) 題型:填空題
設(shè)m,n是兩條不同的直線,α,β是兩個(gè)不同的平面,給出下列命題:
①若α∥β,m?β,n?α,則m∥n;
②若α∥β,m⊥β,n∥α,則m⊥n;
③若α⊥β,m⊥α,n∥β,則m∥n;
④若α⊥β,m⊥α,n⊥β,則m⊥n.
上面命題中,所有真命題的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破四 高考立體幾何(解析版) 題型:選擇題
某幾何體的三視圖如圖所示,則它的體積是( )
A.8-2π B.8- C.8- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破五 高考解析幾何(解析版) 題型:解答題
已知曲線E上任意一點(diǎn)P到兩個(gè)定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線E的方程;
(2)設(shè)過點(diǎn)(0,-2)的直線l與曲線E交于C、D兩點(diǎn),且·=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆高考數(shù)學(xué)(理)一輪總復(fù)習(xí)專題突破一 高考函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題
點(diǎn)P是曲線x2-y-2ln=0上任意一點(diǎn),則點(diǎn)P到直線4x+4y+1=0的最短距離是( )
A.(1-ln 2) B.(1+ln 2)
C. D.(1+ln 2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com