6.設(shè)f(x)=$\frac{1-x}{1+x}$,記f1(x)=f(x),若fk+1(x)=f(fk(x)),k=1,2,…,則f2016(x)=x.

分析 利用函數(shù)的性質(zhì)推導(dǎo)出f1(x),f2(x),f3(x),f4(x),由此能求出f2016(x).

解答 解:∵f(x)=$\frac{1-x}{1+x}$,記f1(x)=f(x),fk+1(x)=f(fk(x)),k=1,2,…,
∴f1(x)=f(x)=$\frac{1-x}{1+x}$,
f2(x)=f(f1(x))=f($\frac{1-x}{1+x}$)=$\frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}$=x,
f3(x)=f(f2(x))=f(x)=$\frac{1-x}{1+x}$,
f4(x)=f(f3(x))=f(x)=$\frac{1-x}{1+x}$.

∴fn(x)=$\left\{\begin{array}{l}{\frac{1-x}{1+x},x為奇數(shù)}\\{x,x為偶數(shù)}\end{array}\right.$.
∴f2016(x)=x.
故答案為:x.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知等差數(shù)列{an}的公差為1,且a1,a3,a9成等比數(shù)列
(1)求數(shù)列{an}的通項(xiàng)公式an及其前n項(xiàng)和Sn;
(1)若數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn,證明Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果實(shí)數(shù)x,y,滿足條件$\left\{\begin{array}{l}{x-y+1≥0}\\{2x+y-2≥0}\\{x-1≤0}\end{array}\right.$,則z=1-$\frac{2}{2x+3y}$的最大值為( 。
A.1B.$\frac{3}{4}$C.0D.$\frac{4}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知角α的頂點(diǎn)在原點(diǎn),始邊與Ox軸重合,終邊經(jīng)過(4a,3a)(a<0),則下列計算正確的是(  )
A.sinα=$\frac{3}{5}$B.cosα=$\frac{4}{5}$C.tanα=-$\frac{3}{4}$D.sinα=-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,直線a,b是異面直線,A,B,C為直線a上三點(diǎn),D,E,F(xiàn)是直線b上三點(diǎn),A′,B′,C′,D′,E′分別為AD,DB,BE,EC,CF的中點(diǎn).
求證:(1)∠A′B′C′=∠C′D′E′;
(2)點(diǎn)A′,B′,C′,D′,E′共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某市為了“還城一片藍(lán)天”,決定大力發(fā)展公共交通,市物價局舉行地鐵票價定價聽證會,討論地鐵的價格與老百姓的承受能力.消費(fèi)者代表為440名,市政府、工會、消保委代表是460名,其他是(專家、經(jīng)營者等)是500名,用分層抽樣的方法從中抽取70名代表進(jìn)行抽樣凋查,對地鐵的“服務(wù)滿意度”與“價格滿意度”都分為五個等級:1級(很不滿意);2級(不滿意);3級(一般);4級(滿意);5級(很滿意),其統(tǒng)計結(jié)果如表(服務(wù)滿意度為x,價格滿意度為y).
  價格滿意度
 1 3 4 5
 服務(wù)滿意度 1 1 1 2 2 0
 2 2 1 3 4 1
 3 3 7 8 4
 4 1 46 4 1
 5 0 1231
(1)求市政府、工會、消保委代表抽取的人數(shù);
(2)求“服務(wù)滿意度”為3時的5個“價格滿意度”數(shù)據(jù)的方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市四所重點(diǎn)中學(xué)進(jìn)行高二期中聯(lián)考,共有5000名學(xué)生參加,為了了解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)的抽取若干名學(xué)生在這次測試中的數(shù)學(xué)成績,制成如下頻率分布表:
分組頻數(shù)頻率
[80,90)
[90,100)0.050
[100,110)0.200
[110,120)360.300
[120,130)0.275
[130,140)12
[140,150]0.050
合計
(1)根據(jù)上面的頻率分布表,推出①,②,③,④處的數(shù)字分別為,3,0.025,0.1,1;
(2)在所給的坐標(biāo)系中畫出[80,150]上的頻率分布直方圖;
(3)根據(jù)題中的信息估計總體:
①120分及以上的學(xué)生人數(shù);
②成績在[126,150]中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}{x-2y+1≥0}\\{x≤2}\\{x+y-1≥0}\end{array}\right.$,z=|2x-2y-1|,則z的取值范圍是[0,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知不等式ax2+bx+c≤0的解集為$\left\{{x|x≤-\frac{1}{3}或x≥2}\right\}$,求不等式cx2+bx+a>0的解集.

查看答案和解析>>

同步練習(xí)冊答案