分析 (1)由等差數(shù)列{an}的公差為1,且a1,a3,a9成等比數(shù)列,可得${a}_{3}^{2}$=a1a9,即$({a}_{1}+2)^{2}$=a1(a1+8),解得a1.再利用等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式即可得出.
(2)$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,再利用“裂項(xiàng)求和”與數(shù)列的單調(diào)性即可得出.
解答 (1)解:∵等差數(shù)列{an}的公差為1,且a1,a3,a9成等比數(shù)列,
∴${a}_{3}^{2}$=a1a9,∴$({a}_{1}+2)^{2}$=a1(a1+8),解得a1=1.
∴an=1+(n-1)=n,
Sn=$\frac{n(n+1)}{2}$.
(2)證明:$\frac{1}{{S}_{n}}$=$\frac{2}{n(n+1)}$=2$(\frac{1}{n}-\frac{1}{n+1})$,
∴數(shù)列{$\frac{1}{{S}_{n}}$}的前n項(xiàng)和為Tn=2$[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})]$=2$(1-\frac{1}{n+1})$<2.
∴Tn<2.
點(diǎn)評 本題考查了“裂項(xiàng)求和”、等比數(shù)列與等差數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{e}$ | B. | 1 | C. | e | D. | e2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com