分析 (1)求導(dǎo)函數(shù),條件轉(zhuǎn)化為a≥-$\frac{1}{2}$x02+x0,x0∈(0,3]恒成立,由二次函數(shù)最值求法,即可得出a的范圍;
(2)由題意可得lnx+x=mx有唯一解,即m=1+$\frac{lnx}{x}$,設(shè)g(x)=1+$\frac{lnx}{x}$,求出導(dǎo)數(shù)和單調(diào)區(qū)間、極值和最值,端點(diǎn)處的函數(shù)值,可得m的范圍.
解答 解:(1)∵函數(shù)f(x)=lnx+$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$-$\frac{a}{{x}^{2}}$,
∵y=f(x)圖象上任意一點(diǎn)的切線的斜率k≤$\frac{1}{2}$恒成立,
∴$\frac{1}{{x}_{0}}$-$\frac{a}{{{x}_{0}}^{2}}$≤$\frac{1}{2}$,x0∈(0,3]恒成立,
∴a≥-$\frac{1}{2}$x02+x0,x0∈(0,3]恒成立,
由 y=-$\frac{1}{2}$x02+x0=-$\frac{1}{2}$(x0-1)2+$\frac{1}{2}$,
可知x0=1時(shí),函數(shù)值為$\frac{1}{2}$,
∴a≥$\frac{1}{2}$,
∴實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞).
(2)方程f(x)-$\frac{a}{x}$+x=mx在區(qū)間[1,e2]內(nèi)有唯一實(shí)數(shù)解,
即為lnx+x=mx有唯一解,
即m=1+$\frac{lnx}{x}$,
設(shè)g(x)=1+$\frac{lnx}{x}$,g′(x)=$\frac{1-lnx}{{x}^{2}}$,
當(dāng)1<x<e時(shí),g′(x)>0,g(x)遞增;
當(dāng)e<x<e2時(shí),g′(x)<0,g(x)遞減.
g(x)在x=e處取得最大值g(e)=1+$\frac{1}{e}$,
g(1)=1,g(e2)=1+$\frac{2}{{e}^{2}}$,g(1)<g(e2),
則實(shí)數(shù)m的取值范圍是m=1+$\frac{1}{e}$或1≤m<1+$\frac{2}{{e}^{2}}$.
點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的幾何意義,函數(shù)在圖象上某點(diǎn)處的切線的斜率就是在該點(diǎn)處的導(dǎo)數(shù)值,考查了利用分離變量法求參數(shù)的取值范圍,考查構(gòu)造函數(shù)法,求出導(dǎo)數(shù)和單調(diào)區(qū)間、極值和最值,此題是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {2} | B. | {1,3} | C. | {1,5} | D. | {2,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (${\sqrt{3}$,0) | B. | (${\root{3}{4}$,2] | C. | [${\root{3}{4}$,2) | D. | [${\root{3}{4}$,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a+b>0 | B. | a-b<0 | C. | $\frac{1}{a}$>$\frac{1}$ | D. | ab<b2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com